-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathview_h5.py
110 lines (88 loc) · 3.53 KB
/
view_h5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import argparse, h5py, os, imageio, torch
import matplotlib.pyplot as plt
from tqdm import tqdm
import torch.nn.functional as F
from disk.common.vis import MultiFigure
parser = argparse.ArgumentParser(
description='Script for viewing the keypoints.h5 and matches.h5 contents',
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('h5_path', help='Path to .h5 artifacts')
parser.add_argument('image_path', help='Path to corresponding images')
parser.add_argument(
'--image-extension', default='jpg', type=str,
help='Extension of the images'
)
parser.add_argument(
'--save', default=None, type=str,
help=('If give a path, saves the visualizations rather than displaying '
'them interactively')
)
parser.add_argument(
'mode', choices=['keypoints', 'matches'],
help=('Whether to dispay the keypoints (in a single image) or matches '
'(across pairs)')
)
args = parser.parse_args()
save_i = 1
def show_or_save():
global save_i
if args.save is None:
plt.show()
return
else:
path = os.path.join(os.path.expanduser(args.save), f'{save_i}.png')
plt.savefig(path)
print(f'Saved to {path}')
save_i += 1
plt.close()
def view_keypoints(h5_path, image_path):
keypoint_f = h5py.File(os.path.join(h5_path, 'keypoints.h5'), 'r')
fname_to_id = {}
for filename in tqdm(list(keypoint_f.keys())):
keypoints = keypoint_f[filename][()]
fname_with_ext = filename + '.' + args.image_extension
path = os.path.join(image_path, fname_with_ext)
if not os.path.isfile(path):
raise IOError(f'Invalid image path {path}')
image = imageio.imread(path)
scale = 10 / max(image.shape)
fig, ax = plt.subplots(figsize=(scale * image.shape[1], scale * image.shape[0]), constrained_layout=True)
ax.axis('off')
ax.imshow(image)
ax.scatter(keypoints[:, 0], keypoints[:, 1], s=7, marker='o', color='white', edgecolors='black', linewidths=0.5)
show_or_save()
def view_matches(h5_path, image_path):
keypoint_f = h5py.File(os.path.join(h5_path, 'keypoints.h5'), 'r')
match_file = h5py.File(os.path.join(h5_path, 'matches.h5'), 'r')
added = set()
for key_1 in match_file.keys():
for key_2 in match_file[key_1].keys():
matches = match_file[key_1][key_2][()]
kp_1 = keypoint_f[key_1][()]
kp_2 = keypoint_f[key_2][()]
path_1 = os.path.join(image_path, key_1 + '.' + args.image_extension)
path_2 = os.path.join(image_path, key_2 + '.' + args.image_extension)
bm_1 = torch.from_numpy(imageio.imread(path_1))
bm_2 = torch.from_numpy(imageio.imread(path_2))
bigger_x = max(bm_1.shape[0], bm_2.shape[0])
bigger_y = max(bm_1.shape[1], bm_2.shape[1])
padded_1 = F.pad(bm_1, (
0, 0,
0, bigger_y - bm_1.shape[1],
0, bigger_x - bm_1.shape[0]
))
padded_2 = F.pad(bm_2, (
0, 0,
0, bigger_y - bm_2.shape[1],
0, bigger_x - bm_2.shape[0]
))
fig = MultiFigure(padded_1, padded_2)
left = torch.from_numpy(kp_1[matches[0]]).T
right = torch.from_numpy(kp_2[matches[1]]).T
fig.mark_xy(left, right)
show_or_save()
if args.mode == 'keypoints':
view_keypoints(args.h5_path, args.image_path)
elif args.mode == 'matches':
view_matches(args.h5_path, args.image_path)