-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmodel.py
498 lines (402 loc) · 16.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import math
import json
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from boxlist import BoxList
from loss import PoseLoss
from postprocess import PostProcessor
from utils import load_bbox_3d
class Scale(nn.Module):
def __init__(self, init_value=1.0):
super().__init__()
self.scale = nn.Parameter(torch.tensor([init_value], dtype=torch.float32))
def forward(self, input):
return input * self.scale
def init_conv_kaiming(module):
if isinstance(module, nn.Conv2d):
nn.init.kaiming_uniform_(module.weight, a=1)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
def init_conv_std(module, std=0.01):
if isinstance(module, nn.Conv2d):
nn.init.normal_(module.weight, std=std)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
class FPN(nn.Module):
def __init__(self, in_channels, out_channel, top_blocks=None):
super().__init__()
self.inner_convs = nn.ModuleList()
self.out_convs = nn.ModuleList()
for i, in_channel in enumerate(in_channels, 1):
if in_channel == 0:
self.inner_convs.append(None)
self.out_convs.append(None)
continue
inner_conv = nn.Conv2d(in_channel, out_channel, 1)
feat_conv = nn.Conv2d(out_channel, out_channel, 3, padding=1)
self.inner_convs.append(inner_conv)
self.out_convs.append(feat_conv)
self.apply(init_conv_kaiming)
self.top_blocks = top_blocks
def forward(self, inputs):
inner = self.inner_convs[-1](inputs[-1])
outs = [self.out_convs[-1](inner)]
for feat, inner_conv, out_conv in zip(
inputs[:-1][::-1], self.inner_convs[:-1][::-1], self.out_convs[:-1][::-1]
):
if inner_conv is None:
continue
upsample = F.interpolate(inner, scale_factor=2, mode='nearest')
inner_feat = inner_conv(feat)
inner = inner_feat + upsample
outs.insert(0, out_conv(inner))
if self.top_blocks is not None:
top_outs = self.top_blocks(outs[-1], inputs[-1])
outs.extend(top_outs)
return outs
class FPNTopP6P7(nn.Module):
def __init__(self, in_channel, out_channel, use_p5=True):
super().__init__()
self.p6 = nn.Conv2d(in_channel, out_channel, 3, stride=2, padding=1)
self.p7 = nn.Conv2d(out_channel, out_channel, 3, stride=2, padding=1)
self.apply(init_conv_kaiming)
self.use_p5 = use_p5
def forward(self, f5, p5):
input = p5 if self.use_p5 else f5
p6 = self.p6(input)
p7 = self.p7(F.relu(p6))
return p6, p7
class TargetCoder(object):
def __init__(self, anchor_sizes, anchor_strides):
self.anchor_sizes = anchor_sizes
self.anchor_strides = anchor_strides
def encode(self, gt_K, gt_3Ds, gt_Rs, gt_Ts, anchors):
TO_REMOVE = 1 #
anchors_w = anchors[:, 2] - anchors[:, 0] + TO_REMOVE
anchors_h = anchors[:, 3] - anchors[:, 1] + TO_REMOVE
anchors_cx = (anchors[:, 2] + anchors[:, 0]) / 2
anchors_cy = (anchors[:, 3] + anchors[:, 1]) / 2
# 2D reprojection from pose
gt_K = gt_K.repeat(anchors.shape[0], 1, 1)
ptn = torch.bmm(gt_K, torch.bmm(gt_Rs, gt_3Ds.transpose(1, 2)) + gt_Ts)
ptx = ptn[:,0,:] / ptn[:,2,:]
pty = ptn[:,1,:] / ptn[:,2,:]
dx = (ptx - anchors_cx.view(-1, 1)) / anchors_w.view(-1, 1)
dy = (pty - anchors_cy.view(-1, 1)) / anchors_h.view(-1, 1)
targets = torch.cat((dx, dy), dim=1)
return targets
def decode(self, preds, anchors):
TO_REMOVE = 1 #
anchors_w = anchors[:, 2] - anchors[:, 0] + TO_REMOVE
anchors_h = anchors[:, 3] - anchors[:, 1] + TO_REMOVE
anchors_cx = (anchors[:, 2] + anchors[:, 0]) / 2
anchors_cy = (anchors[:, 3] + anchors[:, 1]) / 2
ptx = preds[:, :8] * anchors_w.view(-1, 1) + anchors_cx.view(-1, 1)
pty = preds[:, 8:] * anchors_h.view(-1, 1) + anchors_cy.view(-1, 1)
pred_xy = torch.cat((ptx, pty), dim=1)
return pred_xy
class BufferList(nn.Module):
"""
Similar to nn.ParameterList, but for buffers
"""
def __init__(self, buffers=None):
super(BufferList, self).__init__()
if buffers is not None:
self.extend(buffers)
def extend(self, buffers):
offset = len(self)
for i, buffer in enumerate(buffers):
self.register_buffer(str(offset + i), buffer)
return self
def __len__(self):
return len(self._buffers)
def __iter__(self):
return iter(self._buffers.values())
class AnchorGenerator(nn.Module):
"""
For a set of image sizes and feature maps, computes a set
of anchors
"""
def __init__(
self,
sizes=(128, 256, 512),
aspect_ratios=(0.5, 1.0, 2.0),
anchor_strides=(8, 16, 32),
straddle_thresh=0,
):
super(AnchorGenerator, self).__init__()
if len(anchor_strides) == 1:
anchor_stride = anchor_strides[0]
cell_anchors = [
generate_anchors(anchor_stride, sizes, aspect_ratios).float()
]
else:
if len(anchor_strides) != len(sizes):
raise RuntimeError("FPN should have #anchor_strides == #sizes")
cell_anchors = [
generate_anchors(
anchor_stride,
size if isinstance(size, (tuple, list)) else (size,),
aspect_ratios
).float()
for anchor_stride, size in zip(anchor_strides, sizes)
]
self.strides = anchor_strides
self.cell_anchors = BufferList(cell_anchors)
self.straddle_thresh = straddle_thresh
def num_anchors_per_location(self):
return [len(cell_anchors) for cell_anchors in self.cell_anchors]
def grid_anchors(self, grid_sizes):
anchors = []
for size, stride, base_anchors in zip(
grid_sizes, self.strides, self.cell_anchors
):
grid_height, grid_width = size
device = base_anchors.device
shifts_x = torch.arange(
0, grid_width * stride, step=stride, dtype=torch.float32, device=device
)
shifts_y = torch.arange(
0, grid_height * stride, step=stride, dtype=torch.float32, device=device
)
shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x)
shift_x = shift_x.reshape(-1)
shift_y = shift_y.reshape(-1)
shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1)
anchors.append(
(shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)
)
return anchors
def add_visibility_to(self, boxlist):
image_width, image_height = boxlist.size
anchors = boxlist.bbox
if self.straddle_thresh >= 0:
inds_inside = (
(anchors[..., 0] >= -self.straddle_thresh)
& (anchors[..., 1] >= -self.straddle_thresh)
& (anchors[..., 2] < image_width + self.straddle_thresh)
& (anchors[..., 3] < image_height + self.straddle_thresh)
)
else:
device = anchors.device
inds_inside = torch.ones(anchors.shape[0], dtype=torch.uint8, device=device)
boxlist.add_field("visibility", inds_inside)
def forward(self, image_list, feature_maps):
grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps]
anchors_over_all_feature_maps = self.grid_anchors(grid_sizes)
anchors = []
for i, (image_height, image_width) in enumerate(image_list.sizes):
anchors_in_image = []
for anchors_per_feature_map in anchors_over_all_feature_maps:
boxlist = BoxList(
anchors_per_feature_map, (image_width, image_height), mode="xyxy"
)
self.add_visibility_to(boxlist)
anchors_in_image.append(boxlist)
anchors.append(anchors_in_image)
return anchors
def generate_anchors(
stride=16, sizes=(32, 64, 128, 256, 512), aspect_ratios=(0.5, 1, 2)
):
"""Generates a matrix of anchor boxes in (x1, y1, x2, y2) format. Anchors
are centered on stride / 2, have (approximate) sqrt areas of the specified
sizes, and aspect ratios as given.
"""
return _generate_anchors(
stride,
np.array(sizes, dtype=np.float) / stride,
np.array(aspect_ratios, dtype=np.float),
)
def _generate_anchors(base_size, scales, aspect_ratios):
"""Generate anchor (reference) windows by enumerating aspect ratios X
scales wrt a reference (0, 0, base_size - 1, base_size - 1) window.
"""
anchor = np.array([1, 1, base_size, base_size], dtype=np.float) - 0.5
anchors = _ratio_enum(anchor, aspect_ratios)
anchors = np.vstack(
[_scale_enum(anchors[i, :], scales) for i in range(anchors.shape[0])]
)
return torch.from_numpy(anchors)
def _scale_enum(anchor, scales):
"""Enumerate a set of anchors for each scale wrt an anchor."""
w, h, x_ctr, y_ctr = _whctrs(anchor)
ws = w * scales
hs = h * scales
anchors = _mkanchors(ws, hs, x_ctr, y_ctr)
return anchors
def _mkanchors(ws, hs, x_ctr, y_ctr):
"""Given a vector of widths (ws) and heights (hs) around a center
(x_ctr, y_ctr), output a set of anchors (windows).
"""
ws = ws[:, np.newaxis]
hs = hs[:, np.newaxis]
anchors = np.hstack(
(
x_ctr - 0.5 * (ws - 1),
y_ctr - 0.5 * (hs - 1),
x_ctr + 0.5 * (ws - 1),
y_ctr + 0.5 * (hs - 1),
)
)
return anchors
def _ratio_enum(anchor, ratios):
"""Enumerate a set of anchors for each aspect ratio wrt an anchor."""
w, h, x_ctr, y_ctr = _whctrs(anchor)
size = w * h
size_ratios = size / ratios
ws = np.round(np.sqrt(size_ratios))
hs = np.round(ws * ratios)
anchors = _mkanchors(ws, hs, x_ctr, y_ctr)
return anchors
def _whctrs(anchor):
"""Return width, height, x center, and y center for an anchor (window)."""
w = anchor[2] - anchor[0] + 1
h = anchor[3] - anchor[1] + 1
x_ctr = anchor[0] + 0.5 * (w - 1)
y_ctr = anchor[1] + 0.5 * (h - 1)
return w, h, x_ctr, y_ctr
def make_anchor_generator(anchor_sizes, anchor_strides):
aspect_ratios = [1.0]
straddle_thresh = 0
octave = 2.0
scales_per_octave = 1
assert len(anchor_strides) == len(anchor_sizes), "Only support FPN now"
new_anchor_sizes = []
for size in anchor_sizes:
per_layer_anchor_sizes = []
for scale_per_octave in range(scales_per_octave):
octave_scale = octave ** (scale_per_octave / float(scales_per_octave))
per_layer_anchor_sizes.append(octave_scale * size)
new_anchor_sizes.append(tuple(per_layer_anchor_sizes))
anchor_generator = AnchorGenerator(
tuple(new_anchor_sizes), aspect_ratios, anchor_strides, straddle_thresh
)
return anchor_generator
class PoseHead(nn.Module):
def __init__(self, in_channel, n_class, n_conv, prior):
super(PoseHead, self).__init__()
num_classes = n_class - 1
num_anchors = 1
cls_tower = []
pose_tower = []
for i in range(n_conv):
conv_func = nn.Conv2d
cls_tower.append(
conv_func(
in_channel,
in_channel,
kernel_size=3,
stride=1,
padding=1,
bias=True
)
)
cls_tower.append(nn.GroupNorm(32, in_channel))
# cls_tower.append(nn.BatchNorm2d(in_channel))
cls_tower.append(nn.ReLU())
pose_tower.append(
conv_func(
in_channel,
in_channel,
kernel_size=3,
stride=1,
padding=1,
bias=True
)
)
pose_tower.append(nn.GroupNorm(32, in_channel))
# cls_tower.append(nn.BatchNorm2d(in_channel))
pose_tower.append(nn.ReLU())
self.add_module('cls_tower', nn.Sequential(*cls_tower))
self.add_module('pose_tower', nn.Sequential(*pose_tower))
self.cls_logits = nn.Conv2d(
in_channel, num_anchors * num_classes, kernel_size=3, stride=1,
padding=1
)
self.pose_pred = nn.Conv2d(
in_channel, num_anchors * num_classes * 16, kernel_size=3, stride=1,
padding=1
)
# initialization
for modules in [self.cls_tower, self.pose_tower,
self.cls_logits, self.pose_pred]:
# self.centerness]:
for l in modules.modules():
if isinstance(l, nn.Conv2d):
torch.nn.init.normal_(l.weight, std=0.01)
torch.nn.init.constant_(l.bias, 0)
# initialize the bias for focal loss
prior_prob = prior
bias_value = -math.log((1 - prior_prob) / prior_prob)
torch.nn.init.constant_(self.cls_logits.bias, bias_value)
self.scales = nn.ModuleList([Scale(init_value=1.0) for _ in range(5)])
def forward(self, x):
logits = []
pose_reg = []
centerness = []
for l, feature in enumerate(x):
cls_tower = self.cls_tower(feature)
pose_tower = self.pose_tower(feature)
logits.append(self.cls_logits(cls_tower))
pose_pred = self.scales[l](self.pose_pred(pose_tower))
pose_reg.append(pose_pred)
return logits, pose_reg
class PoseModule(nn.Module):
def __init__(self, cfg, backbone):
super(PoseModule, self).__init__()
n_class = cfg['DATASETS']['N_CLASS']
bbox_json = cfg['DATASETS']['BBOX_FILE']
diameters = cfg['DATASETS']['MESH_DIAMETERS']
n_conv = cfg['MODEL']['N_CONV']
prior = cfg['MODEL']['PRIOR']
use_higher_levels = cfg['MODEL']['USE_HIGHER_LEVELS']
feat_channels = cfg['MODEL']['FEAT_CHANNELS']
out_channel = cfg['MODEL']['OUT_CHANNEL']
anchor_sizes = cfg['MODEL']['ANCHOR_SIZES']
anchor_strides = cfg['MODEL']['ANCHOR_STRIDES']
internal_K = cfg['INPUT']['INTERNAL_K']
positive_num = cfg['SOLVER']['POSITIVE_NUM']
positive_lambda = cfg['SOLVER']['POSITIVE_LAMBDA']
loss_weight_cls = cfg['SOLVER']['LOSS_WEIGHT_CLS']
loss_weight_reg = cfg['SOLVER']['LOSS_WEIGHT_REG']
focal_gamma = cfg['SOLVER']['FOCAL_GAMMA']
focal_alpha = cfg['SOLVER']['FOCAL_ALPHA']
inference_th = cfg['TEST']['CONFIDENCE_TH']
self.backbone = backbone
if use_higher_levels:
fpn_top = FPNTopP6P7(feat_channels[-1], out_channel)
self.fpn = FPN(feat_channels, out_channel, fpn_top)
else:
self.fpn = FPN(feat_channels, out_channel, None)
self.head = PoseHead(out_channel, n_class, n_conv, prior)
target_coder = TargetCoder(anchor_sizes, anchor_strides)
self.loss_evaluator = PoseLoss(
focal_gamma, focal_alpha, anchor_sizes, anchor_strides, positive_num, positive_lambda,
loss_weight_cls, loss_weight_reg, internal_K, diameters, target_coder
)
self.post_processor = PostProcessor(inference_th, n_class, target_coder, positive_num, positive_lambda)
self.anchor_generator = make_anchor_generator(anchor_sizes, anchor_strides)
def forward(self, images, targets):
features = self.backbone(images.tensors)
features = self.fpn(features)
# features = [features[-1]] # disable FPN and pick up only the deepest features
pred_cls, pred_reg = self.head(features)
anchors = self.anchor_generator(images, features)
if self.training:
return self._forward_train(pred_cls, pred_reg, targets, anchors)
else:
return self._forward_test(pred_cls, pred_reg, targets, anchors)
def _forward_train(self, pred_cls, pred_reg, targets, anchors):
loss_cls, loss_reg = self.loss_evaluator(
pred_cls, pred_reg, targets, anchors
)
losses = {
"loss_cls": loss_cls,
"loss_reg": loss_reg,
}
return None, losses
def _forward_test(self, pred_cls, pred_reg, targets, anchors):
pred = self.post_processor(pred_cls, pred_reg, targets, anchors)
return pred, {}