-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
executable file
·262 lines (222 loc) · 14.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
"""
StarGAN v2
Copyright (c) 2020-present NAVER Corp.
This work is licensed under the Creative Commons Attribution-NonCommercial
4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
"""
import os
import argparse
from munch import Munch
from torch.backends import cudnn
import torch
from core.data_loader import get_train_loader
from core.data_loader import get_test_loader
from core.solver import Solver
import util as util
def str2bool(v):
return v.lower() in ('true')
def subdirs(dname):
return [d for d in os.listdir(dname)
if os.path.isdir(os.path.join(dname, d))]
def main(args):
print(args)
cudnn.benchmark = True
torch.manual_seed(args.seed)
solver = Solver(args)
if args.mode == 'train':
loaders = Munch(src=get_train_loader(root=args.train_img_dir,
which='source',
img_size=args.img_size,
batch_size=args.batch_size,
shuffle = True,
prob=args.randcrop_prob,
num_workers=args.num_workers),
ref=get_train_loader(root=args.train_img_dir,
which='reference',
img_size=args.img_size,
batch_size=args.batch_size,
shuffle = True,
prob=args.randcrop_prob,
num_workers=args.num_workers),
val_src=get_test_loader(root=args.val_img_dir,
which='source',
img_size=args.img_size,
batch_size=args.val_batch_size,
shuffle=True,
num_workers=args.num_workers),
val_ref=get_test_loader(root=args.val_img_dir,
which='reference',
img_size=args.img_size,
batch_size=args.val_batch_size,
shuffle=True,
num_workers=args.num_workers)
)
solver.train(loaders)
elif args.mode == 'sample':
loaders = Munch(src=get_test_loader(root=args.src_dir,
which='source',
img_size=args.img_size,
batch_size=args.val_batch_size,
shuffle=False,
num_workers=args.num_workers),
ref=get_test_loader(root=args.ref_dir,
which='reference',
img_size=args.img_size,
batch_size=args.val_batch_size,
shuffle=True,
num_workers=args.num_workers))
solver.sample(loaders)
elif args.mode == 'eval':
solver.evaluate()
elif args.mode == "fid":
solver.FID()
else:
raise NotImplementedError
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# model arguments
parser.add_argument('--img_size', type=int, default=256,
help='Image resolution')
parser.add_argument('--num_domains', type=int, default=10,
help='Number of domains')
parser.add_argument('--latent_dim', type=int, default=16,
help='Latent vector dimension')
parser.add_argument('--hidden_dim', type=int, default=512,
help='Hidden dimension of mapping network')
parser.add_argument('--style_dim', type=int, default=64,
help='Style code dimension')
# weight for objective functions
parser.add_argument('--lambda_cyc', type=float, default=1,
help='Weight for cyclic consistency loss')
parser.add_argument('--lambda_sty', type=float, default=1,
help='Weight for style reconstruction loss')
parser.add_argument('--lambda_lpips', type=float, default=1,
help='Weight for style reconstruction loss')
parser.add_argument('--lambda_dc', type=float, default=0.5,
help='Weight for clip contrastive loss')
parser.add_argument('--lambda_ds', type=float, default=1,
help='Weight for diversity sensitive loss')
parser.add_argument('--lambda_dc_reg', type=float, default=1,
help='Weight for diversity sensitive loss')
parser.add_argument('--ds_iter', type=int, default=130000,
help='Number of iterations to optimize diversity sensitive loss')
parser.add_argument('--lambda_reg', type=float, default=1,
help='Weight for R1 regularization')
parser.add_argument('--lambda_p', type=float, default=0.5,
help='Weight for prompt learning')
parser.add_argument('--w_hpf', type=float, default=0,
help='weight for high-pass filtering')
# training arguments
parser.add_argument('--randcrop_prob', type=float, default=0.5,
help='Probabilty of using random-resized cropping')
parser.add_argument('--total_iters', type=int, default=150000,
help='Number of total iterations')
parser.add_argument('--resume_iter', type=int, default=0,
help='Iterations to resume training/testing')
parser.add_argument('--batch_size', type=int, default=7,
help='Batch size for training')
parser.add_argument('--val_batch_size', type=int, default=8,
help='Batch size for validation')
parser.add_argument('--lr', type=float, default=1e-4,
help='Learning rate for D, E and G')
parser.add_argument('--m_lr', type=float, default=1e-4,
help='Learning rate for mapping network')
parser.add_argument('--p_lr', type=float, default=2e-5,
help='Learning rate for promptLearner')
parser.add_argument('--beta1', type=float, default=0.0,
help='Decay rate for 1st moment of Adam')
parser.add_argument('--beta2', type=float, default=0.99,
help='Decay rate for 2nd moment of Adam')
parser.add_argument('--weight_decay', type=float, default=1e-4,
help='Weight decay for optimizer')
parser.add_argument('--num_outs_per_domain', type=int, default=1,
help='Number of generated images per domain during sampling')
# misc
parser.add_argument('--mode', type=str, required=True,
choices=['train', 'sample', 'eval', 'align', 'fid'],
help='This argument is used in solver')
parser.add_argument('--num_workers', type=int, default=4,
help='Number of workers used in DataLoader')
parser.add_argument('--seed', type=int, default=777,
help='Seed for random number generator')
# directory for training
parser.add_argument('--train_img_dir', type=str, default='data/celeba_hq/train',
help='Directory containing training images')
parser.add_argument('--val_img_dir', type=str, default='data/celeba_hq/val',
help='Directory containing validation images')
parser.add_argument('--src_img_dir', type=str, default='data/celeba_hq/val',
help='Directory containing validation images')
parser.add_argument('--ref_img_dir', type=str, default='data/celeba_hq/val',
help='Directory containing validation images')
parser.add_argument('--sample_dir', type=str, default='expr/samples',
help='Directory for saving generated images')
parser.add_argument('--checkpoint_dir', type=str, default='~/dataset1/smoothing/food/checkpoints',
help='Directory for saving network checkpoints')
parser.add_argument('--lpips_type', default='alex', type=str, help='LPIPS backbone')
# directory for calculating metrics
parser.add_argument('--eval_dir', type=str, default='expr/eval',
help='Directory for saving metrics, i.e., FID and LPIPS')
parser.add_argument('--save_dir', type=str)
parser.add_argument('--infer_mode', type=str, default='reference', help='mode to inference model')
parser.add_argument('--latent_num', nargs="+", type=int, help='number to use for attribute')
# directory for testing
parser.add_argument('--result_dir', type=str, default='expr/results',
help='Directory for saving generated images and videos')
parser.add_argument('--src_dir', type=str, default='root/Data/data/animal_faces',
help='Directory containing input source images')
parser.add_argument('--ref_dir', type=str, default='assets/representative/celeba_hq/ref',
help='Directory containing input reference images')
parser.add_argument('--inp_dir', type=str, default='assets/representative/custom/female',
help='input directory when aligning faces')
parser.add_argument('--out_dir', type=str, default='assets/representative/celeba_hq/src/female',
help='output directory when aligning faces')
# face alignment
parser.add_argument('--wing_path', type=str, default='expr/checkpoints/wing.ckpt')
parser.add_argument('--lm_path', type=str, default='expr/checkpoints/celeba_lm_mean.npz')
parser.add_argument('--input', type=str, default='assets/real_A', help='input image name')
parser.add_argument('--test_mode', type=str, default='reference', help='[latent | reference]')
# step size
parser.add_argument('--print_every', type=int, default=10)
parser.add_argument('--sample_every', type=int, default=100)
parser.add_argument('--save_every', type=int, default=1000)
parser.add_argument('--eval_every', type=int, default=100000)
parser.add_argument('--display_freq', type=int, default=400, help='frequency of showing training results on screen')
parser.add_argument('--display_ncols', type=int, default=4, help='if positive, display all images in a single visdom web panel with certain number of images per row.')
parser.add_argument('--display_id', type=int, default=None, help='window id of the web display. Default is random window id')
parser.add_argument('--display_server', type=str, default="http://localhost", help='visdom server of the web display')
parser.add_argument('--display_env', type=str, default='main', help='visdom display environment name (default is "main")')
parser.add_argument('--display_port', type=int, default=8097, help='visdom port of the web display')
parser.add_argument('--update_html_freq', type=int, default=1000, help='frequency of saving training results to html')
parser.add_argument('--print_freq', type=int, default=100, help='frequency of showing training results on console')
parser.add_argument('--display_winsize', type=int, default=256, help='display window size for both visdom and HTML')
parser.add_argument('--no_html', action='store_true', help='do not save intermediate training results to [opt.checkpoints_dir]/[opt.name]/web/')
parser.add_argument('--name', type=str, default='animal_faces', help='name of the experiment. It decides where to store samples and models')
""" LANIT additional parameters: start """
parser.add_argument('--dataset', default='animal_faces', help='Dataset name to use',
choices=['celeb', 'ffhq', 'food', 'food10', 'animal_faces', 'animal_faces_10', 'lsun_church', 'lsun_car', 'anime', 'metface', 'anime', 'landscape'])
parser.add_argument('--step1',action='store_true', help='step1')
parser.add_argument('--step2',action='store_true', help='step2')
parser.add_argument('--dc',action='store_true', help='use domain consistency loss')
parser.add_argument('--dcycle',action='store_true', help='use domain regularization loss')
parser.add_argument('--ds',action='store_true', help='use style diversification loss')
parser.add_argument('--recon_lpips',action='store_true', help='use lpips consistency loss')
parser.add_argument('--cycle',action='store_true', help='use cycle consistency loss')
parser.add_argument('--zero_cut',action='store_true', help='use cut under zero if top k > 1')
parser.add_argument('--multi_hot',action='store_true', help='multi-hot encoding of logits of style E & Discriminator ')
parser.add_argument('--topk', action='store_true', help='top_k value')
parser.add_argument('--use_base', action='store_true', help='filtering out of class to be used')
parser.add_argument('--cal_fid', action='store_true', help='calculate fid when evaluate')
parser.add_argument('--dict', action='store_true', help='calculate fid when evaluate')
""" add this arguemnt in step2. """
parser.add_argument('--text_aug', action='store_true', help='text augmentation')
parser.add_argument('--base_fix', action='store_true', help='fix base prompt')
parser.add_argument('--g_update', action='store_true', help='use augmentation with mapping network')
parser.add_argument('--t_update', action='store_true', help='use augmentation with mapping network')
parser.add_argument('--gt_update', action='store_true', help='use augmentation with mapping network')
parser.add_argument('--alter_update', action='store_true', help='use augmentation with mapping network')
parser.add_argument('--use_scheduler', action='store_true', help='use augmentation with mapping network')
""" end """
args = parser.parse_args()
main(args)