PaperEdge The code and the DIW dataset for "Learning From Documents in the Wild to Improve Document Unwarping" (SIGGRAPH 2022) [paper] [supplementary material] Documents In the Wild (DIW) dataset (2.13GB) link Pretrained models (139.7MB each) Enet Tnet DocUNet benchmark results docunet_benchmark_paperedge.zip The last row of adres.txt is the evaluation results. The values in the last 3 columns are AD, MS-SSIM, and LD. Infer one image. Download the pretrained model to the models directory. Run the demo.py by the following code: $ python demo.py --Enet_ckpt 'models/G_w_checkpoint_13820.pt' \ --Tnet_ckpt 'models/L_w_checkpoint_27640.pt' \ --img_path 'images/1.jpg' \ --out_dir 'output' The final result: