-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpredict.py
161 lines (139 loc) · 6.34 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
from argparse import ArgumentParser
import cv2
import numpy as np
import torch
from lightning.pytorch import seed_everything
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.loggers import WandbLogger
from network.sam_network import PromptSAM, PromptSAMLateFusion
from pl_module_sam_seg import SamSeg
import albumentations
from torch.utils.data import Dataset, DataLoader
def get_augmentation(cfg):
W, H = cfg.dataset.image_hw if cfg.dataset.image_hw is not None else (1024, 1024)
transform_test_fn = albumentations.Compose([
albumentations.Resize(H, W),
])
return transform_test_fn
def get_model(cfg, pretrained=None):
if cfg.model.extra_encoder is not None:
print("Using %s as an extra encoder" % cfg.model.extra_encoder)
neck = True if cfg.model.extra_type == 'plus' else False
if cfg.model.extra_encoder == 'hipt':
from network.get_network import get_hipt
extra_encoder = get_hipt(cfg.model.extra_checkpoint, neck=neck)
else:
raise NotImplementedError
else:
extra_encoder = None
if cfg.model.extra_type in ['plus']:
MODEL = PromptSAM
elif cfg.model.extra_type in ['fusion']:
MODEL = PromptSAMLateFusion
else:
raise NotImplementedError
model = MODEL(
model_type = cfg.model.type,
checkpoint = cfg.model.checkpoint,
prompt_dim = cfg.model.prompt_dim,
num_classes = cfg.dataset.num_classes,
extra_encoder = extra_encoder,
freeze_image_encoder = cfg.model.freeze.image_encoder,
freeze_prompt_encoder = cfg.model.freeze.prompt_encoder,
freeze_mask_decoder = cfg.model.freeze.mask_decoder,
mask_HW = cfg.dataset.image_hw,
feature_input = cfg.dataset.feature_input,
prompt_decoder = cfg.model.prompt_decoder,
dense_prompt_decoder=cfg.model.dense_prompt_decoder,
no_sam=cfg.model.no_sam if "no_sam" in cfg.model else None
)
if pretrained is not None:
state_dict = torch.load(pretrained, map_location='cpu')['state_dict']
state_dict = {k[len('model.'):]:v for k, v in state_dict.items() if k.startswith('model.')}
msg = model.load_state_dict(state_dict, strict=False)
print("Loading weights from %s got msg: %s" % (pretrained, msg))
return model
def get_data_module(cfg):
from image_mask_dataset import GeneralDataModule, ImageMaskDataset, FtMaskDataset
augs = get_augmentation(cfg)
common_cfg_dic = {
"dataset_root": cfg.dataset.dataset_root,
"dataset_csv_path": cfg.dataset.dataset_csv_path,
"val_fold_id": cfg.dataset.val_fold_id,
"data_ext": ".jpg" if "data_ext" not in cfg.dataset else cfg.dataset.data_ext,
"dataset_mean": cfg.dataset.dataset_mean,
"dataset_std": cfg.dataset.dataset_std,
"ignored_classes": cfg.dataset.ignored_classes, # only supports None, 0 or [0, ...]
}
if cfg.dataset.feature_input is True:
dataset_cls = FtMaskDataset
else:
dataset_cls = ImageMaskDataset
data_module = GeneralDataModule(common_cfg_dic, dataset_cls, cus_transforms=augs,
batch_size=cfg.batch_size, num_workers=cfg.num_workers)
return data_module
def get_pl_module(cfg, model, metrics):
pl_module = SamSeg(
cfg = cfg,
sam_model = model,
metrics = metrics,
num_classes = cfg.dataset.num_classes,
focal_cof = cfg.loss.focal_cof,
dice_cof = cfg.loss.dice_cof,
ce_cof=cfg.loss.ce_cof,
iou_cof = cfg.loss.iou_cof,
lr = cfg.opt.learning_rate,
weight_decay = cfg.opt.weight_decay,
lr_steps = cfg.opt.steps,
warmup_steps=cfg.opt.warmup_steps,
ignored_index=cfg.dataset.ignored_classes_metric,
)
return pl_module
def main(cfg, args):
from image_mask_dataset import PredictionDataset
dataset = PredictionDataset(args.input_dir, data_ext=args.data_ext, augmentation=get_augmentation(cfg),
dataset_mean=cfg.dataset.dataset_mean, dataset_std=cfg.dataset.dataset_std)
dataloader = DataLoader(dataset, batch_size=cfg.batch_size, shuffle=False, num_workers=cfg.num_workers)
sam_model = get_model(cfg, pretrained=args.pretrained)
pl_module = get_pl_module(cfg, model=sam_model, metrics=None)
# logger = WandbLogger(project=cfg.project, name=cfg.name, save_dir=cfg.out_dir, log_model=False)
#
# lr_monitor = LearningRateMonitor(logging_interval='epoch')
accumulate_grad_batches = cfg.accumulate_grad_batches if "accumulate_grad_batches" in cfg else 1
trainer = Trainer(default_root_dir=os.path.join(args.output_dir, "log"),
devices=cfg.devices,
max_epochs=cfg.opt.num_epochs,
accelerator="gpu", #strategy="auto",
#strategy='ddp_find_unused_parameters_true',
log_every_n_steps=20, num_sanity_val_steps=0,
precision=cfg.opt.precision,
accumulate_grad_batches=accumulate_grad_batches,
fast_dev_run=False)
pred_masks = trainer.predict(pl_module, dataloaders=dataloader)
pred_masks = torch.cat(pred_masks, dim=0).cpu()
print(pred_masks.shape)
os.makedirs(args.output_dir, exist_ok=True)
for f, pmask in zip(dataset.img_list, pred_masks):
pmask = pmask.numpy().astype(np.uint8)
out_f = os.path.join(args.output_dir, f[:-len(args.data_ext)] + "_mask.png")
cv2.imwrite(out_f, pmask)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("--config", type=str, default=None)
parser.add_argument("--pretrained", type=str, default=None)
parser.add_argument("--input_dir", type=str, default=None)
parser.add_argument("--data_ext", type=str, default=".jpg")
parser.add_argument("--output_dir", default=None)
parser.add_argument('--devices', type=lambda s: [int(item) for item in s.split(',')], default=[0])
# parser.add_argument('--seed', type=int, default=42)
args = parser.parse_args()
module = __import__(args.config, globals(), locals(), ['cfg'])
cfg = module.cfg
cfg["devices"] = args.devices
# cfg["seed"] = args.seed
# seed_everything(cfg["seed"])
print(cfg)
main(cfg, args)
# print(cfg)