-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathrandomizedSVD.m
118 lines (109 loc) · 3.5 KB
/
randomizedSVD.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
function [U,S,V] = randomizedSVD( X, r, rEst, nPower, seed, opts )
% [U,S,V] = randomizedSVD( X, r, rEst, nPower, seed, opts )
% returns V, S such that X ~ U*S*V' ( a m x n matrix)
% where S is a r x r matrix
% rEst >= r is the size of the random multiplies (default: ceil(r+log2(r)) )
% nPower is number of iterations to do the power method
% (should be at least 1, which is the default)
% seed can be the empty matrix; otherwise, it will be used to seed
% the random number generator (useful if you want reproducible results)
% opts is a structure containing further options, including:
% opts.warmStart Set this to a matrix if you have a good estimate
% of the row-space of the matrix already. By default,
% a random matrix is used.
%
% X can either be a m x n matrix, or it can be a cell array
% of the form {@(y)X*y, @(y)X'*y, n }
%
% Follows the algorithm from [1]
%
% [1] "Finding Structure with Randomness: Probabilistic Algorithms
% for Constructing Approximate Matrix Decompositions"
% by N. Halko, P. G. Martinsson, and J. A. Tropp. SIAM Review vol 53 2011.
% http://epubs.siam.org/doi/abs/10.1137/090771806
%
% added to TFOCS in October 2014
if isnumeric( X )
X_forward = @(y) X*y;
X_transpose = @(y) X'*y;
n = size(X,2);
elseif iscell(X)
if isa(X{1},'function_handle')
X_forward = X{1};
else
error('X{1} should be a function handle');
end
if isa(X{2},'function_handle')
X_transpose = X{2};
else
error('X{2} should be a function handle');
end
if size(X) < 3
error('Please specify X in the form {@(y)X*y, @(y)X''*y, n }' );
end
n = X{3};
else
error('Unknown type for X: should be matrix or cell/function handle');
end
function out = setOpts( field, default )
if ~isfield( opts, field )
out = default;
else
out = opts.(field);
end
end
% If you want reproducible results for some reason:
if nargin >= 6 && ~isempty(seed)
% around 2013 or 14 (not sure exactly)
% they start changing .setDefaultStream...
if verLessThan('matlab','8.2')
RandStream.setDefaultStream(RandStream('mt19937ar', 'seed', seed) );
else
RandStream.setGlobalStream(RandStream('mt19937ar', 'seed', seed) );
end
end
if nargin < 3 || isempty( rEst )
rEst = ceil( r + log2(r) ); % for example...
rEst = min( rEst, n );
end
if nargin < 4 || isempty( nPower )
nPower = 1;
end
if nPower < 1, error('nPower must be >= 1'); end
if nargin < 6, opts = []; end
warmStart = setOpts('warmStart',[] );
if isempty( warmStart )
Q = randn( n, rEst );
else
Q = warmStart;
if size(Q,1) ~= n, error('bad height dimension for warmStart'); end
if size(Q,2) > rEst
% with Nesterov, we get this a lot, so disable it
warning('randomizedSVD:warmStartLarge','Warning: warmStart has more columns than rEst');
% disp('Warning: warmStart has more columns than rEst');
else
Q = [Q, randn(n,rEst - size(Q,2) )];
end
end
Q = X_forward(Q);
% Algo 4.4 in "Structure in randomness" paper, but we re-arrange a little
for j = 1:(nPower-1)
[Q,R] = qr(Q,0);
Q = X_transpose(Q);
[Q,R] = qr(Q,0);
Q = X_forward(Q);
end
[Q,R] = qr(Q,0);
% We can now approximate:
% X ~ QQ'X = QV'
% Form Q'X, e.g. V = X'Q
V = X_transpose(Q);
[V,R] = qr(V,0);
[U,S,VV] = svd(R','econ');
U = Q*U;
V = V*VV;
% Now, pick out top r. It's already sorted.
U = U(:,1:r);
V = V(:,1:r);
S = S(1:r,1:r);
end % end of function