forked from CDTrans/CDTrans
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
131 lines (114 loc) · 4.82 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
from torch.backends import cudnn
from utils.logger import setup_logger
from datasets import make_dataloader
from model import make_model
from solver import make_optimizer, create_scheduler
from loss import make_loss
from processor import do_train_pretrain, do_train_uda
import random
import torch
import numpy as np
import os
import argparse
# from timm.scheduler import create_scheduler
from config import cfg
from timm.data import Mixup
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="ReID Baseline Training")
parser.add_argument(
"--config_file", default="", help="path to config file", type=str
)
parser.add_argument("opts", help="Modify config options using the command-line", default=None,
nargs=argparse.REMAINDER)
# parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
# help='LR scheduler (default: "cosine"')
# parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
# help='learning rate (default: 5e-4)')
# parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
# help='learning rate noise on/off epoch percentages')
# parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
# help='learning rate noise limit percent (default: 0.67)')
# parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
# help='learning rate noise std-dev (default: 1.0)')
# parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
# help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
# parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
# help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
# parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
# help='LR decay rate (default: 0.1)')
# parser.add_argument('--epochs', default=120, type=int)
parser.add_argument("--local_rank", default=0, type=int)
args = parser.parse_args()
if args.config_file != "":
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
set_seed(cfg.SOLVER.SEED)
if cfg.MODEL.DIST_TRAIN:
torch.cuda.set_device(args.local_rank)
else:
pass
output_dir = cfg.OUTPUT_DIR
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir)
logger = setup_logger("reid_baseline", output_dir, if_train=True)
logger.info("Saving model in the path :{}".format(cfg.OUTPUT_DIR))
logger.info(args)
if args.config_file != "":
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, 'r') as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
if cfg.MODEL.DIST_TRAIN:
torch.distributed.init_process_group(backend='nccl', init_method='env://')
os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID
if cfg.MODEL.UDA_STAGE == 'UDA':
train_loader, train_loader_normal, val_loader, num_query, num_classes, camera_num, view_num, train_loader1, train_loader2, img_num1, img_num2, s_dataset, t_dataset = make_dataloader(cfg)
else:
train_loader, train_loader_normal, val_loader, num_query, num_classes, camera_num, view_num = make_dataloader(cfg)
model = make_model(cfg, num_class=num_classes, camera_num=camera_num, view_num = view_num)
loss_func, center_criterion = make_loss(cfg, num_classes=num_classes)
optimizer, optimizer_center = make_optimizer(cfg, model, center_criterion)
scheduler = create_scheduler(cfg, optimizer)
if cfg.MODEL.UDA_STAGE == 'UDA':
do_train_uda(
cfg,
model,
center_criterion,
train_loader,
train_loader1,
train_loader2,
img_num1,
img_num2,
val_loader,
s_dataset, t_dataset,
optimizer,
optimizer_center,
scheduler,
loss_func,
num_query, args.local_rank
)
else:
print('pretrain train')
do_train_pretrain(
cfg,
model,
center_criterion,
train_loader,
val_loader,
optimizer,
optimizer_center,
scheduler,
loss_func,
num_query, args.local_rank
)