-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathcpu_topology.cpp
937 lines (788 loc) · 35.3 KB
/
cpu_topology.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
/*
* cpu_topology.cpp
*
* Created on: 27 Sep 2012
* Author: Dean De Leo (deandeleo[at]gmx.com)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "cpu_topology.hpp"
#include <algorithm> // sort
#include <cassert>
#include <iostream>
#include <sstream> // conversion
#include <string>
#include <vector>
using std::cout;
using std::endl;
using std::string;
/*************************************************************************************************
* *
* SINGLETON INTERFACE *
* *
*************************************************************************************************/
static cpu_topology* cpu_topology_instance(NULL);
cpu_topology& get_cpu_topology(){
if(!cpu_topology_instance) cpu_topology_instance = new cpu_topology();
return *cpu_topology_instance;
}
/*************************************************************************************************
* *
* INITIALISER *
* *
*************************************************************************************************/
cpu_topology::cpu_topology() {
threads = NULL;
threads_size = 0;
init();
}
cpu_topology::~cpu_topology() {
topo_delete();
cache_delete();
}
void cpu_topology::init(){
// operating system dependent
os_init();
// sort the nodes, caches, etc.
std::sort(nodes.begin(), nodes.end(), compare_nodes);
for(t_node_it node_it = nodes.begin(); node_it != nodes.end(); node_it++){
t_node* node = *node_it;
std::sort(node->cores.begin(), node->cores.end(), compare_cores);
for(t_core_it core_it = node->cores.begin(); core_it != node->cores.end(); core_it++){
t_core* core = *core_it;
std::sort(core->threads.begin(), core->threads.end(), compare_threads);
}
}
for(t_cache_it cache_it = caches.begin(); cache_it != caches.end(); cache_it++){
t_cache* cache = *cache_it;
std::sort(cache->threads.begin(), cache->threads.end(), compare_threads);
}
//topo_show();
}
/*************************************************************************************************
* *
* INTERFACE *
* *
*************************************************************************************************/
std::size_t cpu_topology::get_cache_line(int cpu, int level) const{
t_thread* thread = topo_cpu_get(cpu);
if(thread == NULL)
throw cpu_topology_exception("[get_cache_line] invalid cpu_id");
if(level <= 0)
throw cpu_topology_exception("[get_cache_line] argument level is negative or zero");
if(thread->caches.size() < static_cast<std::size_t>(level))
throw cpu_topology_exception("[get_cache_line] invalid level");
return thread->caches[level-1]->line;
}
std::size_t cpu_topology::get_cache_size(int cpu, int level) const{
t_thread* thread = topo_cpu_get(cpu);
if(thread == NULL)
throw cpu_topology_exception("[get_cache_size] invalid cpu_id");
if(level <= 0)
throw cpu_topology_exception("[get_cache_line] argument level is negative or zero");
if(thread->caches.size() < static_cast<std::size_t>(level))
throw cpu_topology_exception("[get_cache_size] invalid level");
return thread->caches[level-1]->size;
}
std::size_t cpu_topology::get_cache_levels(int cpu_id) const{
t_thread* thread = topo_cpu_get(cpu_id == -1 ? get_cpuid() : cpu_id);
if(thread == NULL){ throw cpu_topology_exception("[get_cache_levels] invalid cpu_id"); }
return thread->caches.size();
}
std::size_t cpu_topology::get_firstcache_line() const{ return get_cache_line(get_cpuid(), 1); }
std::size_t cpu_topology::get_firstcache_size() const{ return get_cache_size(get_cpuid(), 1); }
std::size_t cpu_topology::get_lastcache_line() const{
int cpu_id = get_cpuid();
return get_cache_line(cpu_id, (int) get_cache_levels(cpu_id));
}
std::size_t cpu_topology::get_lastcache_size() const{
int cpu_id = get_cpuid();
return get_cache_size(cpu_id, (int) get_cache_levels(cpu_id));
}
int cpu_topology::get_node() const{ return get_node(get_cpuid()); }
int cpu_topology::get_node(int cpu_id) const{
if(cpu_id < 0 || ((std::size_t) cpu_id) >= threads_size)
throw cpu_topology_exception("[cpu_topology::get_node] invalid cpu_id");
return threads[cpu_id]->owner->node->id;
}
void cpu_topology::get_nodes(std::vector<int>& output) const{
output.resize(nodes.size());
int i = 0;
for(t_node_const_it it = nodes.begin(); it != nodes.end(); it++){
output[i++] = (*it)->id;
}
}
std::size_t cpu_topology::get_node_count() const{ return nodes.size(); }
std::vector<int> cpu_topology::get_threads_on_node(int node_id, bool include_smt) const {
t_node* node = topo_node_get(node_id);
if(!node){ throw cpu_topology_exception("[cpu_topology::get_threads_on_node] node does not exist"); }
std::vector<int> result;
for(auto core : node->cores){
if(include_smt){
for(auto thread : core->threads){
result.push_back(thread->id);
}
} else {
assert(core->threads.size() >= 1);
result.push_back(core->threads.at(0)->id);
}
}
return result;
}
std::vector<int> cpu_topology::get_threads(bool interleaved, bool include_smt) const {
std::vector<int> result;
if(interleaved){
std::vector<std::vector<int>> threads;
for(size_t i = 0; i < get_node_count(); i++){
threads.push_back( get_threads_on_node(i, include_smt) );
}
// check all nodes have the same size
assert(!threads.empty());
for(size_t i = 1; i < threads.size(); i++){
if(threads[i].size() != threads[0].size()){
throw cpu_topology_exception("[cpu_topology::get_threads] nodes with different number of threads?");
}
}
for(size_t j = 0; j < threads[0].size(); j++){
for(size_t i = 0; i < get_node_count(); i++){
result.push_back(threads[/* node = */i][/* thread = */ j]);
}
}
} else {
for(size_t i = 0; i < get_node_count(); i++){
auto threads = get_threads_on_node(i, include_smt);
for(size_t j = 0; j < threads.size(); j++){
result.push_back(threads[j]);
}
}
}
return result;
}
void cpu_topology::get_sharing_threads(int thread_id_, int cache_level_, std::vector<int>& result_) const{
t_thread* thread = topo_cpu_get(thread_id_);
if(!thread) throw cpu_topology_exception("[cpu_topology::get_sharing_threads] thread_id does not exist");
// search for the related cache
t_cache* cache = 0;
{ // local scope
t_cache_it cache_it = thread->caches.begin();
t_cache_it cache_end = thread->caches.end();
while(!cache && cache_it != cache_end){
if((*cache_it)->level == cache_level_){
cache = *cache_it;
} else {
cache_it++;
}
}
} // end local scope
if(!cache){ throw cpu_topology_exception("[cpu_topology::get_sharing_threads] cache level not found"); }
// add threads
result_.clear();
if(cache->threads.size() > 1){
for(t_thread_it thread_it = cache->threads.begin(); thread_it != cache->threads.end(); thread_it++){
int ret_thread_id = (*thread_it)->id;
if(ret_thread_id != thread_id_){ result_.push_back(ret_thread_id); }
}
}
}
bool cpu_topology::share_cache_with_any(int thread_id, int cache_level, std::vector<int>& candidates) const{
std::vector<int> thread_shareset;
get_sharing_threads(thread_id, cache_level, thread_shareset);
if(thread_shareset.empty()) return false;
std::sort(candidates.begin(), candidates.end());
std::vector<int>::const_iterator candidate_it = candidates.begin();
std::vector<int>::const_iterator shareset_it = thread_shareset.begin();
while( candidate_it != candidates.end() || shareset_it != thread_shareset.end() ){
int c_id = (*candidate_it);
int s_id = (*shareset_it);
if(c_id == s_id) return true;
else if(c_id < s_id) candidate_it++;
else shareset_it++;
}
return false;
}
/*************************************************************************************************
* *
* TOPOLOGY *
* *
*************************************************************************************************/
cpu_topology::t_thread* cpu_topology::topo_add(const int node_id, const int core_id, const int thread_id){
// search for the node
t_node* node = 0;
t_node_it node_it = nodes.begin();
while(!node && node_it != nodes.end()){
if((*node_it)->id == node_id){
node = *node_it;
} else {
node_it++;
}
}
if(!node){ // the node does not already exist
node = new t_node();
node->id = node_id;
nodes.push_back(node);
//cout << "added node " << node_id << endl;
}
// add the core
t_core* core = 0;
t_core_it core_it = node->cores.begin();
while(!core && core_it != node->cores.end()){
if((*core_it)->id == core_id){
core = *core_it;
} else {
core_it++;
}
}
if(!core){
core = new t_core();
core->id = core_id;
core->node = node;
node->cores.push_back(core);
//cout << "added core " << core_id << " for node " << node_id << endl;
}
// add the thread
t_thread* thread = 0;
t_thread_it thread_it = core->threads.begin();
while(!thread && thread_it != core->threads.end()){
if(((*thread_it)->id) == thread_id){
thread = *thread_it;
} else {
thread_it++;
}
}
if(!thread){
thread = new t_thread();
thread->id = thread_id;
thread->owner = core;
core->threads.push_back(thread);
if(static_cast<size_t>(thread_id) < threads_size){
threads[thread_id] = thread;
} else {
std::stringstream errormsg;
(errormsg << "[cpu_topology::topo_add] index overflow: " << thread_id << "; size is: " << threads_size);
throw cpu_topology_exception(errormsg.str());
}
//cout << "added thread " << thread_id << endl;
}
return thread;
}
cpu_topology::t_thread* cpu_topology::topo_cpu_get(int cpu_id) const{
if(cpu_id < 0 || cpu_id > (int) threads_size)
return NULL;
else
return threads[cpu_id];
}
cpu_topology::t_node* cpu_topology::topo_node_get(int node_id) const{
if(nodes.empty()){ return NULL;}
for(t_node_const_it it = nodes.begin(); it != nodes.end(); it++){
int cur_node_id = (*it)->id;
if(cur_node_id == node_id) return *it;
else if(node_id < cur_node_id) return NULL; // nodes are ordered
}
return NULL;
}
void cpu_topology::topo_delete(){
// move by nodes
for(t_node_it node_it = nodes.begin(); node_it != nodes.end(); ++node_it){
t_node* node = *node_it;
// move by cores
for(t_core_it core_it = node->cores.begin(); core_it != node->cores.end(); ++core_it){
t_core* core = *core_it;
// move by threads
for(t_thread_it thread_it = core->threads.begin(); thread_it != core->threads.end(); ++thread_it){
t_thread* thread = *thread_it;
delete thread; *thread_it = 0;
}
delete core; *core_it = 0;
}
delete node; *node_it = 0;
}
nodes.clear();
delete[] threads; threads= 0;
threads_size = 0;
}
void cpu_topology::topo_show() const{
// move by nodes
for(t_node_const_it node_it = nodes.begin(); node_it != nodes.end(); node_it++){
t_node* node = *node_it;
cout << "+ Node: " << node->id << endl;
// move by cores
for(t_core_const_it core_it = node->cores.begin(); core_it != node->cores.end(); core_it++){
t_core* core = *core_it;
cout << "-+ Core: " << core->id << endl;
// move by threads
for(t_thread_const_it thread_it = core->threads.begin(); thread_it != core->threads.end(); thread_it++){
t_thread* thread = *thread_it;
cout << "--+ Thread: " << thread->id << " [+Cache] ";
// move by caches
for(t_cache_const_it cache_it = thread->caches.begin(); cache_it != thread->caches.end(); cache_it++){
t_cache* cache = *cache_it;
cout << "L" << cache->level << ": " << (cache->size /1024)<< "K ";
// is this cache shared?
if(cache->threads.size() > 1){
cout << "(shared with:";
for(t_thread_it cache_thread_it = cache->threads.begin(); cache_thread_it != cache->threads.end(); cache_thread_it++){
if((*cache_thread_it)->id != thread->id){
cout << ' ' << (*cache_thread_it)->id;
}
}
cout << ") ";
}
}
cout << endl;
}
}
}
}
/*************************************************************************************************
* *
* CACHES *
* *
*************************************************************************************************/
cpu_topology::t_cache* cpu_topology::cache_find(const shared_cpu_map_t& shared_cpu_map, int level){
if(caches.empty()) return NULL;
t_cache_it cache_it = caches.begin();
while(cache_it != caches.end()){
if((*cache_it)->level == level && // same level
(*cache_it)->shared_cpu_map.size() == shared_cpu_map.size() && // same shared cpu map size
equal(begin((*cache_it)->shared_cpu_map), end((*cache_it)->shared_cpu_map), begin(shared_cpu_map))
)
return *cache_it;
else
++cache_it;
}
return NULL;
}
cpu_topology::t_cache* cpu_topology::cache_add(shared_cpu_map_t& shared_cpu_map, int level, std::size_t size, std::size_t coherency_line_size){
// remove elements = 0 at the tail
bool remove_tail = true;
while (remove_tail && !shared_cpu_map.empty()){
remove_tail = shared_cpu_map.back() == 0;
if(remove_tail) shared_cpu_map.pop_back();
}
// verify if not already present
t_cache* cache = cache_find(shared_cpu_map, level);
if(cache != NULL) return cache;
cache = new t_cache();
cache->shared_cpu_map = shared_cpu_map;
cache->level = level;
cache->size = size;
cache->line = coherency_line_size;
caches.push_back(cache);
return cache;
}
void cpu_topology::cache_link(t_cache* c, t_thread* t){
// std::cout << "Linking cpu id " << t->id << " with cache L" << c->level << ", map " << c->shared_cpu_map << endl;
c->threads.push_back(t);
if(static_cast<std::size_t>(c->level) > t->caches.size()){
t->caches.insert(t->caches.end(), c->level - t->caches.size(), (t_cache*) NULL);
}
t->caches[c->level -1] = c; // levels start from 1
}
void cpu_topology::cache_delete(){
for( t_cache_it cache_it = caches.begin(); cache_it != caches.end(); cache_it ++ ){
delete *cache_it; *cache_it = 0;
}
caches.clear();
}
/*************************************************************************************************
* *
* SORTING FUNCTIONS *
* *
*************************************************************************************************/
int cpu_topology::compare_nodes(t_node* n0, t_node* n1){ return n0->id < n1->id; }
int cpu_topology::compare_cores(t_core* c0, t_core* c1){ return c0->id < c1->id; }
int cpu_topology::compare_threads(t_thread* t0, t_thread* t1){ return t0->id < t1->id; }
#if defined(__linux__)
/*************************************************************************************************
* *
* OS LINUX *
* 27 Sep 2012 *
* *
*************************************************************************************************/
#include <cctype> // isdigit
#include <cstdlib> // atoi, FIXME: not the best for safety
#include <fstream>
#include <list>
// current cpu where the thread is in execution
#include <sched.h>
#include <sys/syscall.h>
#include <sys/stat.h>
// GNU interface to access the filesystem
#include <dirent.h>
#include <unistd.h>
// Defined functions
namespace { //namespace to avoid potential conflicts
int get_directories(const std::string& path, std::list<std::string>& output);
int get_dirfflag(const std::string& path, std::list<std::string>& output, int flag);
std::string get_file_content(const std::string& path);
int hex2int(const std::string& strhex);
bool file_exists(const std::string& path);
}
/*************************************************************************************************
* *
* OS INIT *
* *
*************************************************************************************************/
void cpu_topology::os_init(){
// retrieve all the directory for the cpu path
std::list<string> cpus;
string cpu_path = "/sys/devices/system/cpu";
get_directories(cpu_path, cpus);
// filter out non relevant entries
for(std::list<string>::iterator it = cpus.begin(); it != cpus.end(); it++){
string& directory = *it;
if(!(directory.length() > 3 && directory.substr(0, 3) == "cpu" && isdigit(directory.at(3)))){
cpus.erase(it++);
}
}
// threads index
threads = new t_thread*[cpus.size()]();
threads_size = cpus.size();
// create the node topology
for(std::list<string>::iterator it = cpus.begin(); it != cpus.end(); it++){
string& cpu_complete_name = *it;
string str_cpu_id = cpu_complete_name.substr(3);
string current_cpu_path = cpu_path + '/' + cpu_complete_name;
string str_core_id = get_file_content(current_cpu_path + "/topology/core_id");
string str_node_id = get_file_content(current_cpu_path + "/topology/physical_package_id");
// convert retrieved ids into integers
int node_id = atoi(str_node_id.c_str());
int core_id = atoi(str_core_id.c_str());
int thread_id = atoi(str_cpu_id.c_str());
t_thread* cpu = topo_add(node_id, core_id, thread_id);
//cout << "Node: " << node_id << ", core: " << core_id << ", thread: " << thread_id << endl;
std::list<string> list_caches;
get_directories(current_cpu_path + "/cache", list_caches);
for(std::list<string>::iterator it_cacheindx = list_caches.begin(); it_cacheindx != list_caches.end(); it_cacheindx++){
string current_cache_path = current_cpu_path + "/cache/" + *it_cacheindx;
string path_type = current_cache_path + "/type";
if(!file_exists(path_type)) continue;
string str_type = get_file_content(path_type);
if(str_type!="Instruction"){ // skip instruction caches
string str_size = get_file_content(current_cache_path + "/size");
string str_level = get_file_content(current_cache_path + "/level");
string str_coherency_line_size = get_file_content(current_cache_path + "/coherency_line_size");
string str_shared_cpu_map = get_file_content(current_cache_path + "/shared_cpu_map"); //hex value
// process the shared_cpu_map field
shared_cpu_map_t shared_cpu_map;
bool shared_cpu_map_sepfound = true;
size_t endpos = str_shared_cpu_map.length();
do {
size_t startpos = str_shared_cpu_map.rfind(',', endpos -1);
shared_cpu_map_sepfound = startpos != string::npos;
string segment;
if(shared_cpu_map_sepfound){
segment = str_shared_cpu_map.substr(startpos +1, endpos - startpos -1);
endpos = startpos;
} else {
segment = str_shared_cpu_map.substr(0, endpos);
}
shared_cpu_map.push_back(hex2int(segment));
} while(shared_cpu_map_sepfound);
// convert retrieved data into int/size_t
int cache_level = atoi(str_level.c_str());
std::size_t cache_size = (std::size_t) atoi(str_size.c_str()) * 1024;
std::size_t cache_line = (std::size_t) atoi(str_coherency_line_size.c_str());
t_cache* cache = cache_add(shared_cpu_map, cache_level, cache_size, cache_line);
cache_link(cache, cpu);
//cout << "ID : " << cache_id << "; Level: " << cache_level << "; Type: " << str_type << "; Size: " << cache_size << "; Line: " << cache_line << endl;
}
}
}
}
/*************************************************************************************************
* *
* GNU FILESYSTEM *
* *
*************************************************************************************************/
namespace{
int get_directories(const std::string& path, std::list<std::string>& output){
return get_dirfflag(path, output, DT_DIR);
}
int get_dirfflag(const std::string& path, std::list<std::string>& output, int flag){
DIR* directory = opendir(path.c_str());
if(!directory) return -1;
struct dirent* directoryContent;
while((directoryContent = readdir(directory)) !=NULL){
if(directoryContent->d_type == flag && directoryContent->d_name[0] != '.'){
output.push_back(std::string(directoryContent->d_name));
}
}
closedir(directory);
return 0;
}
std::string get_file_content(const std::string& path){
std::fstream stream;
std::string content;
stream.open(path.c_str(), std::fstream::in);
stream >> content;
stream.close();
return content;
}
bool file_exists(const std::string& path){
struct stat statbuf = {0};
int rc = stat(path.c_str(), &statbuf);
return rc == 0 && S_ISREG(statbuf.st_mode);
}
} // namespace cpu_topology_impl
/*************************************************************************************************
* *
* SUPPORT FUNCTIONS *
* *
*************************************************************************************************/
namespace{
int hex2int(const std::string& strhex){
int x;
std::stringstream ss;
ss << std::hex << strhex;
ss >> x;
return x;
}
}
/**
* Retrieves the cpu_id for the thread in execution
*/
int cpu_topology::os_get_cpuid() const{
// sched_getcpu requires glibc 2.6+
// andromeda is glibc 2.5
//return sched_getcpu();
#ifdef SYS_getcpu
int cpu_id;
// SYS_getcpu exists from kernel 2.6.19, andromeda is 2.6.18 o.O
int ret_value = syscall(SYS_getcpu, &cpu_id, NULL, NULL);
return (ret_value == -1) ? ret_value : cpu_id;
#else // for kernel < 2.6.19
pid_t pid = syscall(SYS_getpid);
std::stringstream stringbuffer;
int cpu_id;
stringbuffer << "cat /proc/" << pid << "/stat | awk '{print $39}'";
FILE* file = popen(stringbuffer.str().c_str(), "r");
if (fscanf(file, "%d", &cpu_id) == EOF){
cpu_id = -1;
}
pclose(file);
return cpu_id;
#endif
}
#elif defined(_WIN32) || defined(__CYGWIN__)
/*************************************************************************************************
* *
* OS Windows *
* 03 May 2014 *
* *
*************************************************************************************************/
#include <cstdlib> // malloc
#include <limits> // numeric_limits
#define NOMINMAX // ask windows.h to not define the macros min & max
#include <windows.h>
// Defined functions
namespace { //namespace to avoid potential conflicts
void _throw_exception_glpi(const std::string& prefix); // throw an exception for a failure of GetLogicalProcessorInformation
void _mask2vector(std::vector<int>& v, ULONG_PTR mask); // transform the bitmask into a sequence of integers
void _mask2vector(std::vector<int>& v, const std::vector<int32_t>& shared_cpu_map); // alias for the new API
int _mask_slpi(std::vector< SYSTEM_LOGICAL_PROCESSOR_INFORMATION* >& v, ULONG_PTR); // find to which entry this mask is compatible
int _mask_slpi(std::vector< SYSTEM_LOGICAL_PROCESSOR_INFORMATION* >& v, const std::vector<int32_t>& shared_cpu_map); // alias for the new the new API
bool _mask_is_subset_of(ULONG_PTR a, ULONG_PTR b); // returns true if a is subset of b, in terms of bits
ULONG_PTR _convert_cpumap(const std::vector<int32_t>& shared_cpu_map); // convert the field to a single int64_t value
// avoid the memory leak on the buffer when returning from an exception
class bufferptr {
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION ptr;
public:
bufferptr(PSYSTEM_LOGICAL_PROCESSOR_INFORMATION ptr_ = NULL) : ptr(ptr_) {}
~bufferptr() { free(ptr); ptr = NULL; };
void reset(std::size_t sz) {
free(ptr);
ptr = static_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION> (malloc(sz));
if (!ptr) throw cpu_topology_exception("[cpu_topology::os_init] memory allocation failure"); // it should not happen
}
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION operator* () const { return ptr; };
};
}
/*************************************************************************************************
* *
* OS Init * *
* *
*************************************************************************************************/
void cpu_topology::os_init() {
using std::size_t;
// Use the function GetLogicalProcessorInformation from the Windows API to retrieve the information
// regarding
// see example on http://msdn.microsoft.com/en-us/library/windows/desktop/ms683194%28v=vs.85%29.aspx
bufferptr buffer;
DWORD bufferLength(0);
// dummy invocation to discover the required size of the buffer
BOOL rc = GetLogicalProcessorInformation(*buffer, &bufferLength);
if (!rc && GetLastError() == ERROR_INSUFFICIENT_BUFFER) { //ok
buffer.reset(bufferLength);
// try again to get the information from the winzozz
rc = GetLogicalProcessorInformation(*buffer, &bufferLength);
// another error?
if (!rc) _throw_exception_glpi("failure in the second invocation of the GetLogicalProcessorInformation API: ");
}
else { // error, but not the one we were expecting...
_throw_exception_glpi("failure with the dummy invocation of GetLogicalProcessorInformation API: ");
}
// allocate the indexer for the (physical) threads
SYSTEM_INFO sysInfo; // usual windows mess ;-)
GetSystemInfo(&sysInfo);
threads_size = static_cast<size_t>(sysInfo.dwNumberOfProcessors);
threads = new t_thread*[threads_size]();
// iterate over the returned information
// for a description of SYSTEM_LOGICAL_PROCESSOR_INFORMATION, see
// http://msdn.microsoft.com/en-us/library/windows/desktop/ms686694%28v=vs.85%29.aspx
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION array_procinfo = *buffer;
size_t array_procinfo_sz = bufferLength / sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION);
std::vector< SYSTEM_LOGICAL_PROCESSOR_INFORMATION* > tmp_nodes;
std::vector< SYSTEM_LOGICAL_PROCESSOR_INFORMATION* > tmp_cores;
for (size_t i = 0; i < array_procinfo_sz; i++) {
SYSTEM_LOGICAL_PROCESSOR_INFORMATION& info = array_procinfo[i];
switch (info.Relationship) {
case RelationNumaNode:
{
tmp_nodes.push_back(&info);
break;
}
case RelationProcessorCore:
{
tmp_cores.push_back(&info);
break;
}
case RelationCache:
{
PROCESSOR_CACHE_TYPE type = info.Cache.Type;
// the cache instruction gives a further interesting perspective of the underlying architecture, nevertheless
// is outside the scope of this class to retrieve such information
if (type != CacheInstruction && type != CacheTrace) {
int64_t processorMask = static_cast<int64_t>(info.ProcessorMask); // FIXME: processorMask is 64 bit, it may cause truncation
int level = static_cast<int>(info.Cache.Level);
size_t linesize = static_cast<size_t>(info.Cache.LineSize);
size_t size = static_cast<size_t>(info.Cache.Size);
int32_t procmask_lo = static_cast<int32_t>(processorMask & std::numeric_limits<uint32_t>::max());
int32_t procmask_hi = static_cast<int32_t>(processorMask >> 32);
shared_cpu_map_t shared_cpu_map;
shared_cpu_map.push_back(procmask_lo);
shared_cpu_map.push_back(procmask_hi);
cache_add(shared_cpu_map, level, size, linesize);
//cout << "[" << i << "][CACHE] processor: " << info.ProcessorMask << " [" << processorMask << "] , level: " << level <<
//", LineSize: " << linesize << ", Size: " << size << ", Line: " << linesize << endl;
}
break;
}
default:
{
// ignore
}
}
}
// now iterate over the caches of level 1 to discover the physical threads
std::vector<int> maskvector;
maskvector.reserve(64);
for (size_t i = 0; i < caches.size(); i++) {
if (caches[i]->level == 1) {
int node_id = tmp_nodes[_mask_slpi(tmp_nodes, caches[i]->shared_cpu_map)]->NumaNode.NodeNumber;
int core_id = _mask_slpi(tmp_cores, caches[i]->shared_cpu_map);
maskvector.clear();
_mask2vector(maskvector, caches[i]->shared_cpu_map);
for (size_t j = 0; j < maskvector.size(); j++) {
int thread_id = maskvector[j];
//cout << "cache_id:" << i << ", node: " << node_id << ", core: " << core_id << ", thread: " << thread_id << endl; // debug
if (static_cast<size_t>(thread_id) > threads_size)
throw cpu_topology_exception("[cpu_topology::os_init] [Windows] thread id is equal or greater than thread size");
t_thread* thread = topo_add(node_id, core_id, thread_id);
threads[thread_id] = thread;
cache_link(caches[i], thread);
}
}
}
// link the rest of the caches
// we cannot link these caches before because there is no guarantee that all involved threads were allocated
for (size_t i = 0; i < caches.size(); i++) {
if (caches[i]->level > 1) {
maskvector.clear();
_mask2vector(maskvector, caches[i]->shared_cpu_map);
for (size_t j = 0; j < maskvector.size(); j++) {
int thread_id = maskvector[j];
if (static_cast<size_t>(thread_id) > threads_size)
throw cpu_topology_exception("[cpu_topology::os_init] [Windows] thread id is equal or greater than thread size");
cache_link(caches[i], threads[thread_id]);
}
}
}
// topo_show(); // debug
}
int cpu_topology::os_get_cpuid() const {
return static_cast<int>(GetCurrentProcessorNumber());
}
/*************************************************************************************************
* *
* OS Support functions * *
* *
*************************************************************************************************/
namespace{
void _throw_exception_glpi(const std::string& prefix) {
std::stringstream errormsg;
errormsg << "[cpu_topology::os_init] " << prefix << GetLastError();
throw cpu_topology_exception(errormsg.str());
}
// remind to reset the vector before invoking this function!
void _mask2vector(std::vector<int>& v, ULONG_PTR mask) {
int value = 0;
while (mask != 0) {
if (mask % 2 == 1) v.push_back(value);
mask /= 2;
value++;
}
}
void _mask2vector(std::vector<int>& v, const std::vector<int32_t>& shared_cpu_map) {
_mask2vector(v, _convert_cpumap(shared_cpu_map));
}
int _mask_slpi(std::vector< SYSTEM_LOGICAL_PROCESSOR_INFORMATION* >& v, ULONG_PTR a) {
for (std::size_t i = 0; i < v.size(); i++) {
ULONG_PTR b = v[i]->ProcessorMask;
if (_mask_is_subset_of(a, b)) return static_cast<int>(i);
}
// not found !
throw cpu_topology_exception("[_mask_slpi] unable to match the given mask");
}
int _mask_slpi(std::vector< SYSTEM_LOGICAL_PROCESSOR_INFORMATION* >& v, const std::vector<int32_t>& shared_cpu_map) {
return _mask_slpi(v, _convert_cpumap(shared_cpu_map));
}
bool _mask_is_subset_of(ULONG_PTR a, ULONG_PTR b) {
while (a != 0) {
if (a % 2 == 1 && b % 2 == 0)
return false;
// move on
a /= 2;
b /= 2;
}
return true;
}
ULONG_PTR _convert_cpumap(const std::vector<int32_t>& shared_cpu_map) {
ULONG_PTR result = 0;
if (shared_cpu_map.size() > 0) result += shared_cpu_map[0];
if (shared_cpu_map.size() > 1) result += ((int64_t)shared_cpu_map[1]) << 32;
if (shared_cpu_map.size() > 2) throw cpu_topology_exception("Field shared_cpu_map too big");
return result;
}
}
#else
#error "Operating system not supported"
#endif
/*************************************************************************************************
* *
* EXCEPTIONS *
* *
*************************************************************************************************/
cpu_topology_exception::cpu_topology_exception(const std::string& msg) throw() : runtime_error(msg), message(msg) { }
const char* cpu_topology_exception::what() const throw() { return message.c_str(); }