-
Notifications
You must be signed in to change notification settings - Fork 0
/
bilstm.py
596 lines (508 loc) · 26.7 KB
/
bilstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import options, utils
from fairseq.modules import AdaptiveSoftmax
from . import (
FairseqEncoder, FairseqIncrementalDecoder, FairseqModel, register_model,
register_model_architecture,
)
from torch.serialization import default_restore_location
@register_model('denoise_nmt_cotrain')
class LSTMModel(FairseqModel):
def __init__(self, encoder, decoder):
super().__init__(encoder, decoder)
@staticmethod
def add_args(parser):
"Pretrained model path"
# parser.add_argument('--model_path', type=str, metavar='M',
# help='pretrained nmt model')
"""Add model-specific arguments to the parser."""
parser.add_argument('--dropout', type=float, metavar='D',
help='dropout probability')
parser.add_argument('--encoder-embed-dim', type=int, metavar='N',
help='encoder embedding dimension')
parser.add_argument('--encoder-embed-path', type=str, metavar='STR',
help='path to pre-trained encoder embedding')
parser.add_argument('--encoder-hidden-size', type=int, metavar='N',
help='encoder hidden size')
parser.add_argument('--encoder-layers', type=int, metavar='N',
help='number of encoder layers')
parser.add_argument('--encoder-bidirectional', action='store_true',
help='make all layers of encoder bidirectional')
parser.add_argument('--decoder-embed-dim', type=int, metavar='N',
help='decoder embedding dimension')
parser.add_argument('--decoder-embed-path', type=str, metavar='STR',
help='path to pre-trained decoder embedding')
parser.add_argument('--decoder-hidden-size', type=int, metavar='N',
help='decoder hidden size')
parser.add_argument('--decoder-layers', type=int, metavar='N',
help='number of decoder layers')
parser.add_argument('--decoder-out-embed-dim', type=int, metavar='N',
help='decoder output embedding dimension')
parser.add_argument('--decoder-attention', type=str, metavar='BOOL',
help='decoder attention')
parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR',
help='comma separated list of adaptive softmax cutoff points. '
'Must be used with adaptive_loss criterion')
# denoise function arguments
parser.add_argument('--denoise-hidden-size', type=int, metavar='N',
help='denoise lstm hidden size')
parser.add_argument('--denoise-layers', type=int, metavar='N',
help='number of denoise lstm layers')
parser.add_argument('--denoise-bidirectional', action='store_true',
help='make all layers of denoise lstm bidirectional')
# Granular dropout settings (if not specified these default to --dropout)
parser.add_argument('--encoder-dropout-in', type=float, metavar='D',
help='dropout probability for encoder input embedding')
parser.add_argument('--encoder-dropout-out', type=float, metavar='D',
help='dropout probability for encoder output')
parser.add_argument('--decoder-dropout-in', type=float, metavar='D',
help='dropout probability for decoder input embedding')
parser.add_argument('--decoder-dropout-out', type=float, metavar='D',
help='dropout probability for decoder output')
parser.add_argument('--share-decoder-input-output-embed', default=False,
action='store_true',
help='share decoder input and output embeddings')
parser.add_argument('--share-all-embeddings', default=False, action='store_true',
help='share encoder, decoder and output embeddings'
' (requires shared dictionary and embed dim)')
# denoise dropout-in & dropoutout
parser.add_argument('--denoise-dropout-in', type=float, metavar='D',
help='dropout probability for denoise input embedding')
parser.add_argument('--denoise-dropout-out', type=float, metavar='D',
help='dropout probability for denoise output')
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
# make sure that all args are properly defaulted (in case there are any new ones)
base_architecture(args)
def load_pretrained_embedding_from_file(embed_path, dictionary, embed_dim):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx)
embed_dict = utils.parse_embedding(embed_path)
utils.print_embed_overlap(embed_dict, dictionary)
return utils.load_embedding(embed_dict, dictionary, embed_tokens)
if args.encoder_embed_path:
pretrained_encoder_embed = load_pretrained_embedding_from_file(
args.encoder_embed_path, task.source_dictionary, args.encoder_embed_dim)
else:
num_embeddings = len(task.source_dictionary)
pretrained_encoder_embed = Embedding(
num_embeddings, args.encoder_embed_dim, task.source_dictionary.pad()
)
if args.share_all_embeddings:
# double check all parameters combinations are valid
if task.source_dictionary != task.target_dictionary:
raise ValueError('--share-all-embeddings requires a joint dictionary')
if args.decoder_embed_path and (
args.decoder_embed_path != args.encoder_embed_path):
raise ValueError(
'--share-all-embed not compatible with --decoder-embed-path'
)
if args.encoder_embed_dim != args.decoder_embed_dim:
raise ValueError(
'--share-all-embeddings requires --encoder-embed-dim to '
'match --decoder-embed-dim'
)
pretrained_decoder_embed = pretrained_encoder_embed
args.share_decoder_input_output_embed = True
else:
# separate decoder input embeddings
pretrained_decoder_embed = None
if args.decoder_embed_path:
pretrained_decoder_embed = load_pretrained_embedding_from_file(
args.decoder_embed_path,
task.target_dictionary,
args.decoder_embed_dim
)
# one last double check of parameter combinations
if args.share_decoder_input_output_embed and (
args.decoder_embed_dim != args.decoder_out_embed_dim):
raise ValueError(
'--share-decoder-input-output-embeddings requires '
'--decoder-embed-dim to match --decoder-out-embed-dim'
)
encoder = LSTMEncoder(
dictionary=task.source_dictionary,
embed_dim=args.encoder_embed_dim,
hidden_size=args.encoder_hidden_size,
num_layers=args.encoder_layers,
dropout_in=args.encoder_dropout_in,
dropout_out=args.encoder_dropout_out,
bidirectional=args.encoder_bidirectional,
pretrained_embed=pretrained_encoder_embed,
denoise_hidden_size=args.denoise_hidden_size,
denoise_num_layers=args.denoise_layers,
denoise_bidirectional=args.denoise_bidirectional,
denoise_dropout_in=args.denoise_dropout_in,
denoise_dropout_out=args.denoise_dropout_out,
)
decoder = LSTMDecoder(
dictionary=task.target_dictionary,
embed_dim=args.decoder_embed_dim,
hidden_size=args.decoder_hidden_size,
out_embed_dim=args.decoder_out_embed_dim,
num_layers=args.decoder_layers,
dropout_in=args.decoder_dropout_in,
dropout_out=args.decoder_dropout_out,
attention=options.eval_bool(args.decoder_attention),
encoder_embed_dim=args.encoder_embed_dim,
encoder_output_units=encoder.output_units,
pretrained_embed=pretrained_decoder_embed,
share_input_output_embed=args.share_decoder_input_output_embed,
adaptive_softmax_cutoff=(
options.eval_str_list(args.adaptive_softmax_cutoff, type=int)
if args.criterion == 'adaptive_loss' else None
),
)
# for parameter in encoder.parameters():
# parameter.requires_grad = False
# for parameter in encoder.denoise_lstm.parameters():
# parameter.requires_grad = True
# for parameter in decoder.parameters():
# parameter.requires_grad = False
denoise_mt = cls(encoder, decoder)
# state = torch.load(args.model_path, map_location=lambda s, l: default_restore_location(s, 'cpu'))
# denoise_mt.load_state_dict(state['model'], strict=False)
return denoise_mt
class LSTMEncoder(FairseqEncoder):
"""LSTM encoder."""
def __init__(
self, dictionary, embed_dim=512, hidden_size=512, num_layers=1,
dropout_in=0.1, dropout_out=0.1, bidirectional=False,
left_pad=True, pretrained_embed=None, padding_value=0.,
denoise_hidden_size=512, denoise_num_layers=1,denoise_bidirectional=False,
denoise_dropout_in=0.1,denoise_dropout_out=0.1
):
super().__init__(dictionary)
self.num_layers = num_layers
self.dropout_in = dropout_in
self.dropout_out = dropout_out
self.bidirectional = bidirectional
self.hidden_size = hidden_size
# denoise parameter
self.denoise_num_layers = denoise_num_layers
self.denoise_hidden_size = denoise_hidden_size
self.denoise_bidirectional = denoise_bidirectional
self.denoise_dropout_in = denoise_dropout_in
self.denoise_dropout_out = denoise_dropout_out
num_embeddings = len(dictionary)
self.padding_idx = dictionary.pad()
if pretrained_embed is None:
self.embed_tokens = Embedding(num_embeddings, embed_dim, self.padding_idx)
else:
self.embed_tokens = pretrained_embed
# add denoise function
self.denoise_lstm = LSTM(
input_size = embed_dim,
hidden_size = int(denoise_hidden_size/2),
num_layers = denoise_num_layers,
dropout = self.denoise_dropout_out if denoise_num_layers > 1 else 0.,
bidirectional = denoise_bidirectional
)
self.lstm = LSTM(
input_size=denoise_hidden_size,
hidden_size=hidden_size,
num_layers=num_layers,
dropout=self.dropout_out if num_layers > 1 else 0.,
bidirectional=bidirectional,
)
self.left_pad = left_pad
self.padding_value = padding_value
self.output_units = hidden_size
if bidirectional:
self.output_units *= 2
def forward(self, src_tokens, src_lengths):
if self.left_pad:
# convert left-padding to right-padding
src_tokens = utils.convert_padding_direction(
src_tokens,
self.padding_idx,
left_to_right=True,
)
bsz, seqlen = src_tokens.size()
# embed tokens
x = self.embed_tokens(src_tokens)
x = F.dropout(x, p=self.dropout_in, training=self.training)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
# apply denoise lstm
# pack embedded source tokens into a PackedSequence
packed_x = nn.utils.rnn.pack_padded_sequence(x, src_lengths.data.tolist())
if self.denoise_bidirectional:
denoise_state_size = 2 * self.denoise_num_layers, bsz, int(self.denoise_hidden_size/2)
else:
denoise_state_size = self.denoise_num_layers, bsz, self.denoise_hidden_size
denoise_h0 = x.data.new(*denoise_state_size).zero_()
denoise_c0 = x.data.new(*denoise_state_size).zero_()
denoise_packed_outs, (denoise_hiddens, denoise_cells) = self.denoise_lstm(packed_x, (denoise_h0, denoise_c0))
x, _ = nn.utils.rnn.pad_packed_sequence(denoise_packed_outs, padding_value=self.padding_value)
x = F.dropout(x, p=self.dropout_out, training=self.training)
# apply LSTM
packed_x = nn.utils.rnn.pack_padded_sequence(x, src_lengths.data.tolist())
if self.bidirectional:
state_size = 2 * self.num_layers, bsz, self.hidden_size
else:
state_size = self.num_layers, bsz, self.hidden_size
h0 = x.data.new(*state_size).zero_()
c0 = x.data.new(*state_size).zero_()
packed_outs, (final_hiddens, final_cells) = self.lstm(packed_x, (h0, c0))
# unpack outputs and apply dropout
x, _ = nn.utils.rnn.pad_packed_sequence(packed_outs, padding_value=self.padding_value)
x = F.dropout(x, p=self.dropout_out, training=self.training)
assert list(x.size()) == [seqlen, bsz, self.output_units]
if self.bidirectional:
def combine_bidir(outs):
return outs.view(self.num_layers, 2, bsz, -1).transpose(1, 2).contiguous().view(self.num_layers, bsz, -1)
final_hiddens = combine_bidir(final_hiddens)
final_cells = combine_bidir(final_cells)
encoder_padding_mask = src_tokens.eq(self.padding_idx).t()
return {
'encoder_out': (x, final_hiddens, final_cells),
'encoder_padding_mask': encoder_padding_mask if encoder_padding_mask.any() else None
}
def reorder_encoder_out(self, encoder_out, new_order):
encoder_out['encoder_out'] = tuple(
eo.index_select(1, new_order)
for eo in encoder_out['encoder_out']
)
if encoder_out['encoder_padding_mask'] is not None:
encoder_out['encoder_padding_mask'] = \
encoder_out['encoder_padding_mask'].index_select(1, new_order)
return encoder_out
def max_positions(self):
"""Maximum input length supported by the encoder."""
return int(1e5) # an arbitrary large number
class AttentionLayer(nn.Module):
def __init__(self, input_embed_dim, output_embed_dim):
super().__init__()
self.input_proj = Linear(input_embed_dim, output_embed_dim, bias=False)
self.output_proj = Linear(input_embed_dim + output_embed_dim, output_embed_dim, bias=False)
def forward(self, input, source_hids, encoder_padding_mask):
# input: bsz x input_embed_dim
# source_hids: srclen x bsz x output_embed_dim
# x: bsz x output_embed_dim
x = self.input_proj(input)
# compute attention
attn_scores = (source_hids * x.unsqueeze(0)).sum(dim=2)
# don't attend over padding
if encoder_padding_mask is not None:
attn_scores = attn_scores.float().masked_fill_(
encoder_padding_mask,
float('-inf')
).type_as(attn_scores) # FP16 support: cast to float and back
attn_scores = F.softmax(attn_scores, dim=0) # srclen x bsz
# sum weighted sources
x = (attn_scores.unsqueeze(2) * source_hids).sum(dim=0)
x = F.tanh(self.output_proj(torch.cat((x, input), dim=1)))
return x, attn_scores
class LSTMDecoder(FairseqIncrementalDecoder):
"""LSTM decoder."""
def __init__(
self, dictionary, embed_dim=512, hidden_size=512, out_embed_dim=512,
num_layers=1, dropout_in=0.1, dropout_out=0.1, attention=True,
encoder_embed_dim=512, encoder_output_units=512, pretrained_embed=None,
share_input_output_embed=False, adaptive_softmax_cutoff=None,
):
super().__init__(dictionary)
self.dropout_in = dropout_in
self.dropout_out = dropout_out
self.hidden_size = hidden_size
self.share_input_output_embed = share_input_output_embed
self.need_attn = True
self.adaptive_softmax = None
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
if pretrained_embed is None:
self.embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx)
else:
self.embed_tokens = pretrained_embed
self.encoder_output_units = encoder_output_units
assert encoder_output_units == hidden_size, \
'encoder_output_units ({}) != hidden_size ({})'.format(encoder_output_units, hidden_size)
# TODO another Linear layer if not equal
self.layers = nn.ModuleList([
LSTMCell(
input_size=encoder_output_units + embed_dim if layer == 0 else hidden_size,
hidden_size=hidden_size,
)
for layer in range(num_layers)
])
self.attention = AttentionLayer(encoder_output_units, hidden_size) if attention else None
if hidden_size != out_embed_dim:
self.additional_fc = Linear(hidden_size, out_embed_dim)
if adaptive_softmax_cutoff is not None:
# setting adaptive_softmax dropout to dropout_out for now but can be redefined
self.adaptive_softmax = AdaptiveSoftmax(num_embeddings, embed_dim, adaptive_softmax_cutoff,
dropout=dropout_out)
elif not self.share_input_output_embed:
self.fc_out = Linear(out_embed_dim, num_embeddings, dropout=dropout_out)
def forward(self, prev_output_tokens, encoder_out_dict, incremental_state=None):
encoder_out = encoder_out_dict['encoder_out']
encoder_padding_mask = encoder_out_dict['encoder_padding_mask']
if incremental_state is not None:
prev_output_tokens = prev_output_tokens[:, -1:]
bsz, seqlen = prev_output_tokens.size()
# get outputs from encoder
encoder_outs, _, _ = encoder_out[:3]
srclen = encoder_outs.size(0)
# embed tokens
x = self.embed_tokens(prev_output_tokens)
x = F.dropout(x, p=self.dropout_in, training=self.training)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
# initialize previous states (or get from cache during incremental generation)
cached_state = utils.get_incremental_state(self, incremental_state, 'cached_state')
if cached_state is not None:
prev_hiddens, prev_cells, input_feed = cached_state
else:
_, encoder_hiddens, encoder_cells = encoder_out[:3]
num_layers = len(self.layers)
prev_hiddens = [encoder_hiddens[i] for i in range(num_layers)]
prev_cells = [encoder_cells[i] for i in range(num_layers)]
input_feed = x.data.new(bsz, self.encoder_output_units).zero_()
attn_scores = x.data.new(srclen, seqlen, bsz).zero_()
outs = []
for j in range(seqlen):
# input feeding: concatenate context vector from previous time step
input = torch.cat((x[j, :, :], input_feed), dim=1)
for i, rnn in enumerate(self.layers):
# recurrent cell
hidden, cell = rnn(input, (prev_hiddens[i], prev_cells[i]))
# hidden state becomes the input to the next layer
input = F.dropout(hidden, p=self.dropout_out, training=self.training)
# save state for next time step
prev_hiddens[i] = hidden
prev_cells[i] = cell
# apply attention using the last layer's hidden state
if self.attention is not None:
out, attn_scores[:, j, :] = self.attention(hidden, encoder_outs, encoder_padding_mask)
else:
out = hidden
out = F.dropout(out, p=self.dropout_out, training=self.training)
# input feeding
input_feed = out
# save final output
outs.append(out)
# cache previous states (no-op except during incremental generation)
utils.set_incremental_state(
self, incremental_state, 'cached_state', (prev_hiddens, prev_cells, input_feed))
# collect outputs across time steps
x = torch.cat(outs, dim=0).view(seqlen, bsz, self.hidden_size)
# T x B x C -> B x T x C
x = x.transpose(1, 0)
# srclen x tgtlen x bsz -> bsz x tgtlen x srclen
if not self.training and self.need_attn:
attn_scores = attn_scores.transpose(0, 2)
else:
attn_scores = None
# project back to size of vocabulary
if self.adaptive_softmax is None:
if hasattr(self, 'additional_fc'):
x = self.additional_fc(x)
x = F.dropout(x, p=self.dropout_out, training=self.training)
if self.share_input_output_embed:
x = F.linear(x, self.embed_tokens.weight)
else:
x = self.fc_out(x)
return x, attn_scores
def reorder_incremental_state(self, incremental_state, new_order):
super().reorder_incremental_state(incremental_state, new_order)
cached_state = utils.get_incremental_state(self, incremental_state, 'cached_state')
if cached_state is None:
return
def reorder_state(state):
if isinstance(state, list):
return [reorder_state(state_i) for state_i in state]
return state.index_select(0, new_order)
new_state = tuple(map(reorder_state, cached_state))
utils.set_incremental_state(self, incremental_state, 'cached_state', new_state)
def max_positions(self):
"""Maximum output length supported by the decoder."""
return int(1e5) # an arbitrary large number
def make_generation_fast_(self, need_attn=False, **kwargs):
self.need_attn = need_attn
def Embedding(num_embeddings, embedding_dim, padding_idx):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.uniform_(m.weight, -0.1, 0.1)
nn.init.constant_(m.weight[padding_idx], 0)
return m
def LSTM(input_size, hidden_size, **kwargs):
m = nn.LSTM(input_size, hidden_size, **kwargs)
for name, param in m.named_parameters():
if 'weight' in name or 'bias' in name:
param.data.uniform_(-0.1, 0.1)
return m
def LSTMCell(input_size, hidden_size, **kwargs):
m = nn.LSTMCell(input_size, hidden_size, **kwargs)
for name, param in m.named_parameters():
if 'weight' in name or 'bias' in name:
param.data.uniform_(-0.1, 0.1)
return m
def Linear(in_features, out_features, bias=True, dropout=0):
"""Linear layer (input: N x T x C)"""
m = nn.Linear(in_features, out_features, bias=bias)
m.weight.data.uniform_(-0.1, 0.1)
if bias:
m.bias.data.uniform_(-0.1, 0.1)
return m
@register_model_architecture('denoise_nmt_cotrain', 'denoise_nmt_cotrain')
def base_architecture(args):
# args.model_path = getattr(args, 'model_path', "" )
args.dropout = getattr(args, 'dropout', 0.1)
args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 512)
args.encoder_embed_path = getattr(args, 'encoder_embed_path', None)
args.encoder_hidden_size = getattr(args, 'encoder_hidden_size', args.encoder_embed_dim)
args.encoder_layers = getattr(args, 'encoder_layers', 1)
args.encoder_bidirectional = getattr(args, 'encoder_bidirectional', False)
args.encoder_dropout_in = getattr(args, 'encoder_dropout_in', args.dropout)
args.encoder_dropout_out = getattr(args, 'encoder_dropout_out', args.dropout)
args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 512)
args.decoder_embed_path = getattr(args, 'decoder_embed_path', None)
args.decoder_hidden_size = getattr(args, 'decoder_hidden_size', args.decoder_embed_dim)
args.decoder_layers = getattr(args, 'decoder_layers', 1)
args.decoder_out_embed_dim = getattr(args, 'decoder_out_embed_dim', 512)
args.decoder_attention = getattr(args, 'decoder_attention', '1')
args.decoder_dropout_in = getattr(args, 'decoder_dropout_in', args.dropout)
args.decoder_dropout_out = getattr(args, 'decoder_dropout_out', args.dropout)
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', False)
args.share_all_embeddings = getattr(args, 'share_all_embeddings', False)
args.adaptive_softmax_cutoff = getattr(args, 'adaptive_softmax_cutoff', '10000,50000,200000')
# denoise args
args.denoise_hidden_size = getattr(args, 'denoise_hidden_size', args.encoder_embed_dim)
args.denoise_layers = getattr(args, 'denoise_layers', 1)
args.denoise_bidirectional = getattr(args, 'denoise_bidirectional', False)
args.denoise_dropout_in = getattr(args, 'denoise_dropout_in', args.dropout)
args.denoise_dropout_out = getattr(args, 'denoise_dropout_out', args.dropout)
@register_model_architecture('denoise_nmt_cotrain', 'denoise_nmt_cotrain_lstm')
def denoise_nmt_lstm(args):
args.dropout = getattr(args, 'dropout', 0.3)
args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 1024)
args.encoder_layers = getattr(args, 'encoder_layers', 2)
args.encoder_bidirectional = getattr(args, 'encoder_bidirectional', False)
args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 1024)
args.decoder_layers = getattr(args, 'decoder_layers', 2)
args.decoder_out_embed_dim = getattr(args, 'decoder_out_embed_dim', 1024)
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
args.denoise_bidirectional = getattr(args, 'denoise_bidirectional', False)
base_architecture(args)
@register_model_architecture('denoise_nmt_cotrain', 'denoise_nmt_cotrain_bilstm')
def denoise_nmt_lstm(args):
args.dropout = getattr(args, 'dropout', 0.3)
args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 512)
args.encoder_layers = getattr(args, 'encoder_layers', 2)
args.encoder_bidirectional = getattr(args, 'encoder_bidirectional', True)
args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 1024)
args.decoder_layers = getattr(args, 'decoder_layers', 2)
args.decoder_out_embed_dim = getattr(args, 'decoder_out_embed_dim', 1024)
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True)
args.denoise_bidirectional = getattr(args, 'denoise_bidirectional', True)
base_architecture(args)