forked from shenghua-liu/HoloScope
-
Notifications
You must be signed in to change notification settings - Fork 0
/
holoscopeFraudDect.py
774 lines (730 loc) · 29.7 KB
/
holoscopeFraudDect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
import sys, os, time
import numpy as np
import scipy as sci
import scipy.sparse.linalg as slin
import copy
from mytools.MinTree import MinTree
from scipy.sparse import coo_matrix, csr_matrix, lil_matrix
from mytools.ioutil import loadedge2sm
from gendenseblock import *
from matricizationSVD import *
from edgepropertyAnalysis import *
import math
class Ptype(object):
freq =0
ts = 1
rate=2
@staticmethod
def ptype2str(p):
if p == Ptype.freq:
return 'freq'
if p == Ptype.ts:
return 'ts'
if p == Ptype.rate:
return 'rate'
@staticmethod
def ptypes2str(ptypes):
strs=[]
if Ptype.freq in ptypes:
strs.append(Ptype.ptype2str(Ptype.freq))
if Ptype.ts in ptypes:
strs.append(Ptype.ptype2str(Ptype.ts))
if Ptype.rate in ptypes:
strs.append(Ptype.ptype2str(Ptype.rate))
pstr = '-'.join(strs)
return pstr
class HoloScopeOpt:
def __init__(self, graphmat, qfun='exp', b=32,
aggmethod='sum', sdrop=True, mbd=0.5, sdropscale='linear',
tsfile=None, tunit='s', ratefile=None):
'how many times of a user rates costumers if he get the cost balance'
self.coe = 0
'the larger expbase can give a heavy penalty to the power-law curve'
self.expbase = b
self.scale = qfun
self.b = b
self.aggmethod=aggmethod
self.suspbd = 0.0 #susp < suspbd will assign to zero
self.priordropslop=sdrop
self.graph=graphmat.tocoo()
self.graphr = self.graph.tocsr()
self.graphc = self.graph.tocsc()
self.matricizetenor=None
self.nU, self.nV=graphmat.shape
self.indegrees = graphmat.sum(0).getA1()
self.e0 = math.log(graphmat.sum(), self.nU) #logrithm of edges
print 'matrix size: {} x {}\t#edges: {}'.format(self.nU, self.nV,
self.indegrees.sum())
self.tsfile, self.ratefile, self.tunit = tsfile, ratefile, tunit
self.tspim, self.ratepim = None, None
'field for multiple property graph'
if tsfile is not None or ratefile is not None:
if self.priordropslop:
self.orggraph = self.graphr.copy()
else:
self.orggraph = self.graphr
if tsfile is not None:
self.mbd = mbd #multiburst bound
self.tspim = MultiEedgePropBiGraph(self.orggraph)
self.tspim.load_from_edgeproperty(tsfile, mtype=csr_matrix, dtype=np.int64)
self.tspim.setup_ts4all_sinks(tunit)
if self.priordropslop:
'slops weighted with max burst value'
self.weightWithDropslop(weighted=True, scale=sdropscale)
else:
self.priordropslop = False #no input of time attribute
if ratefile is not None:
self.ratepim = MultiEedgePropBiGraph(self.orggraph)
self.ratepim.load_from_edgeproperty(ratefile, mtype=csr_matrix, dtype=float)
self.ratepim.setup_rate4all_sinks()
'weighed with idf prior from Fraudar'
#self.weightWithIDFprior()
'if weighted the matrix the windegrees is not equal to indegrees'
self.windegrees = self.graphc.sum(0).getA1()
self.woutdegrees = self.graphr.sum(1).getA1()
self.A = np.array([]) #binary array
self.fbs = np.zeros(graphmat.shape[1], dtype=np.int) #frequency of bs in B
'\frac_{ f_A{(bi)} }{ f_U{(bi)}}'
self.bsusps = np.array([]) # the suspicious scores of products given A
self.vx = 0 # current objective value
self.vxs = [] #record all the vxs of optimizing iterations
self.Y= np.array([])
self.yfbs = np.array([])
self.ybsusps = np.array([])
'current is the best'
self.bestvx = self.vx
self.bestA = np.array([])
self.bestfbs = np.array([])
self.bestbsusps = np.array([])
def weightWithDropslop(self, weighted, scale):
'weight the adjacency matrix with the sudden drop of ts for each col'
if weighted:
colWeights = np.multiply(self.tspim.dropslops, self.tspim.dropfalls)
else:
colWeights = self.tspim.dropslops
if scale == 'logistic':
from scipy.stats import logistic
from sklearn import preprocessing
'zero mean scale'
colWeights = preprocessing.scale(colWeights)
colWeights = logistic.cdf(colWeights)
elif scale == 'linear':
from sklearn import preprocessing
#add a base of suspecious for each edge
colWeights = preprocessing.minmax_scale(colWeights) +1
elif scale == 'plusone':
colWeights += 1
elif scale == 'log1p':
colWeights = np.log1p(colWeights) + 1
else:
print '[Warning] no scale for the prior weight'
n = self.nV
colDiag = lil_matrix((n, n))
colDiag.setdiag(colWeights)
self.graphr = self.graphr * colDiag.tocsr()
self.graph = self.graphr.tocoo(copy=False)
self.graphc = self.graph.tocsc(copy=False)
print "finished computing weight matrix"
def weightWithIDFprior(self):
print 'weightd with IDF prior'
colWeights = 1.0/np.log(self.indegrees + 5)
n = self.nV
colDiag = lil_matrix((n, n))
colDiag.setdiag(colWeights)
self.graphr = self.graphr * colDiag.tocsr()
self.graph = self.graphr.tocoo(copy=False)
self.graphc = self.graph.tocsc(copy=False)
return
'new objective with no f_A(v)/|A|'
def maxobjfunc(self, A, fbs, bsusps=None):
nu = 0.0
de = 0.0
numA = np.sum(A)
de = numA + bsusps.sum() #math.sqrt(numA*bsusps.sum())#similar
if numA == 0:
return 0
if bsusps is not None:
nu = np.dot(fbs, bsusps)
else:
nu = fbs.sum()
res = nu/np.float64( de )
return res
def aggregationMultiProp(self, mbs, method='sum'):
if method == 'rank':
from scipy.stats import rankdata
rankmethod = 'average'
k=60 #for rank fusion
if len(mbs) == 1:
val = mbs.values()[0]
if method == 'rank':
rb = rankdata(-np.array(val), method=rankmethod)
return np.reciprocal(rb+k) * k
else:
return val
if method == 'sum':
'this is the joint probability of exp form of prob'
bsusps = mbs.values()[0]
for v in mbs.values()[1:]:
bsusps += v
elif method == 'rank':
'rank fusion'
arrbsusps = []
for val in mbs.values():
rb = rankdata(-np.array(val), method=rankmethod)
arrbsusps.append(np.reciprocal(rb+k))
bsusps = np.array(arrbsusps).sum(0) * k
else:
print '[Error] Invalid method {}\n'.format(method)
return bsusps
#@profile
def evalsusp4ts(self, suspusers, multiburstbd = 0.5, weighted=True):
'the id of suspusers consistently starts from 0 no matter the source'
incnt, inratio = self.tspim.suspburstinvolv(multiburstbd, weighted,
delta=True)
suspts=inratio
return suspts
#@profile
def evalsusp4rate(self, suspusers, neutral=False, scale='max'):
susprates = self.ratepim.suspratedivergence(neutral, delta=True)
if scale == 'max':
assert(self.ratepim.maxratediv > 0)
nsusprates = susprates/self.ratepim.maxratediv
elif scale=='minmax':
#need a copy, and do not change susprates' value for delta
nsusprates = preprocessing.minmax_scale(susprates, copy=True)
else:
#no scale
nsusprates = susprates
return nsusprates
'sink suspicious with qfunc, no f_A(v)/|A|'
def prodsuspicious(self, fbs, A=None, scale='exp', ptype=[Ptype.freq]):
multibsusps={}
if Ptype.freq in ptype:
posids = self.windegrees>0
bs = np.zeros(self.nV)
bs[posids] = np.divide(fbs[posids], self.windegrees[posids].astype(np.float64))
multibsusps[Ptype.freq] = bs
if Ptype.ts in ptype:
suspusers = A.nonzero()[0]
bs = self.evalsusp4ts(suspusers, multiburstbd=self.mbd)
multibsusps[Ptype.ts] = bs
if Ptype.rate in ptype:
suspusers = A.nonzero()[0]
bs = self.evalsusp4rate(suspusers)
multibsusps[Ptype.rate] = bs
bsusps = self.aggregationMultiProp(multibsusps, self.aggmethod)
bsusps = self.qfunc(bsusps, fbs=fbs, scale=scale,
numratios=len(multibsusps))
return bsusps
def initpimsuspects(self, suspusers, ptype):
if Ptype.ts in ptype:
self.tspim.setupsuspects(suspusers)
temp1, temp2 = self.tspim.suspburstinvolv(multiburstbd=0.5, weighted=True,
delta=False)
if Ptype.rate in ptype:
self.ratepim.setupsuspects(suspusers)
tmp = self.ratepim.suspratedivergence(neutral=False,
delta=False)
return
def start(self, A0, ptype=[Ptype.ts]):
self.A = A0
users = A0.nonzero()[0]
self.ptype=ptype # the property type that the postiorer uses
self.fbs = self.graphr[users].sum(0).getA1()
self.fbs = self.fbs.astype(np.float64, copy=False)
'initially set up currrent suspects'
self.initpimsuspects(users, ptype=ptype)
self.bsusps = self.prodsuspicious(self.fbs, self.A, ptype=ptype)
self.vx = self.maxobjfunc(self.A, self.fbs, self.bsusps)
self.vxs.append(self.vx)
"current is the best"
self.bestA = np.array(self.A)
self.bestvx = self.vx
self.bestfbs = np.array(self.fbs)
self.bestbsusps = np.array(self.bsusps)
def candidatefbs(self, z):
'increase or decrease'
coef = 1 if self.A[z] == 0 else -1
bz = self.graphr[z]
candfbs = (coef*bz + self.fbs).getA1()
return candfbs
#@profile
def greedyshaving(self):
'''greedy algorithm'''
maxint = np.iinfo(np.int64).max/2
delscores = np.array([maxint]*self.nU)
delcands = self.A.nonzero()[0]
deluserCredit = self.graphr[delcands,:].dot(self.bsusps)
delscores[delcands] = deluserCredit
print 'set up the greedy min tree'
MT = MinTree(delscores)
i=0
sizeA = np.sum(self.A)
sizeA0 = sizeA
setA = set(self.A.nonzero()[0])
while len(setA) > 0:
z, nextdelta = MT.getMin()
setY = setA - {z}
Y = copy.copy(self.A) # A is X
Y[z] = 1-Y[z]
self.Y=Y
self.yfbs = self.candidatefbs(z)
Ylist = Y.nonzero()[0]
self.setdeltapimsusp(z, Ylist, add=False)
self.ybsusps = self.prodsuspicious(self.yfbs, self.Y,
ptype=self.ptype)
vy = self.maxobjfunc(self.Y, self.yfbs, self.ybsusps)
'chose next if next if the best'
if vy > self.bestvx:
self.bestA = np.array(self.Y)
self.bestfbs = self.yfbs
self.bestbsusps = self.ybsusps
self.bestvx = vy
MT.changeVal(z, maxint) #make the min to the largest for deletion
prodchange = self.ybsusps - self.bsusps
effectprod = prodchange.nonzero()[0]
if len(effectprod)>0:
#this is delta for all users
userdelta = self.graphc[:,effectprod].dot(prodchange[effectprod])
yuserdelta = userdelta[Ylist]
for u in yuserdelta.nonzero()[0]:
uidx = Ylist[u]
MT.changeVal(uidx,yuserdelta[u])
'delete next user, make current to next'
self.A = self.Y
sizeA -= 1
setA = setY
self.fbs = self.yfbs
self.bsusps = self.ybsusps
self.vx = vy
self.vxs.append(self.vx)
if i % (sizeA0/100 + 1) == 0:
sys.stdout.write('.')
sys.stdout.flush()
i+=1
print ''
return np.sum(self.A)
def initfastgreedy(self, ptype, numSing, rbd='avg'):
'''
default: ptype=[Ptype.freq], numSing=10, rbd='avg'
'''
self.ptype=ptype
self.numSing=numSing #number of singular vectors we consider
self.avgexponents=[]
if len(ptype)==1:
self.initfastgreedy2D(numSing, rbd)
elif len(ptype) > 1:
self.initfastgreedyMD(numSing, rbd)
self.bestvx = -1
self.qchop=False
#reciprocal of indegrees
self.sindegreciprocal = csr_matrix(self.windegrees).astype(np.float64)
data = self.sindegreciprocal.data
nozidx = data.nonzero()[0]
self.sindegreciprocal.data[nozidx] = data[nozidx]**(-1)
return
def tenormatricization(self, tspim, ratepim, tbindic, rbins,
mtype=coo_matrix, dropweight=True, logdegree=False):
'matricize the pim of ts and rates into matrix'
if tspim is None and ratepim is None:
return self.graph, range(self.nV)
tscm, rtcm, dl = None, None,0
if Ptype.ts in self.ptype and tspim is not None:
tscm = tspim.edgeidxm.tocoo()
dl = len(tscm.data)
if Ptype.rate in self.ptype and ratepim is not None:
rtcm = ratepim.edgeidxm.tocoo()
dl = len(rtcm.data)
if dropweight is True and tspim is not None:
w = np.multiply(tspim.dropfalls, tspim.dropslops)
w = np.log1p(w) + 1
else:
w = np.ones(self.nV)
xs, ys, data, colWeights = [],[],[],[] # for matricized tenor
matcols, rindexcols={},{}
for i in xrange(dl):
if tscm is not None and rtcm is not None:
assert(tscm.row[i] == rtcm.row[i] and tscm.col[i] == rtcm.col[i])
u = tscm.row[i]
v = tscm.col[i]
for t1, r1 in zip(tspim.eprop[tscm.data[i]],
ratepim.eprop[rtcm.data[i]]):
t = t1/int(tbindic[self.tunit])
r = rbins(r1)
strcol = ' '.join(map(str,[v,t,r]))
if strcol not in matcols:
idx = len(matcols)
matcols[strcol] = idx
rindexcols[idx]=strcol
xs.append(u)
ys.append(matcols[strcol])
data.append(1.0)
elif tscm is not None:
u = tscm.row[i]
v = tscm.col[i]
for t1 in tspim.eprop[tscm.data[i]]:
t = t1/int(tbindic[self.tunit])
strcol = ' '.join(map(str,[v,t]))
if strcol not in matcols:
idx = len(matcols)
matcols[strcol] = idx
rindexcols[idx]=strcol
xs.append(u)
ys.append(matcols[strcol])
data.append(1.0)
elif rtcm is not None:
u = rtcm.row[i]
v = rtcm.col[i]
for r1 in ratepim.eprop[rtcm.data[i]]:
r = rbins(r1)
strcol = ' '.join(map(str,[v,r]))
if strcol not in matcols:
idx = len(matcols)
matcols[strcol] = idx
rindexcols[idx]=strcol
xs.append(u)
ys.append(matcols[strcol])
data.append(1.0)
else:
print 'Warning: no ts and rate for matricization'
return self.graph, range(self.nV)
nrow, ncol = max(xs)+1, max(ys)+1
sm = mtype( (data, (xs, ys)), shape=(nrow, ncol), dtype=np.float64 )
if logdegree:
print 'using log degree'
sm.data[0:] = np.log1p(sm.data)
if dropweight:
m1, n1 = sm.shape
for i in xrange(n1):
pos = rindexcols[i].find(' ')
v = int(rindexcols[i][:pos])
colWeights.append(w[v])
colDiag = lil_matrix((n1, n1))
colDiag.setdiag(colWeights)
sm = sm * colDiag.tocsr()
return sm, rindexcols
def initfastgreedyMD(self, numSing, rbd):
'''
use matricizationSVD instead of freq matrix svd
'''
afile = self.tsfile if self.tsfile is not None else self.ratefile
ipath = os.path.dirname(os.path.abspath(afile))
tbindic={'s':24*3600, 'd':30}
'edgepropertyAnalysis has already digitized the ratings'
rbins = lambda x: int(x) #lambda x: 0 if x<2.5 else 1 if x<=3.5 else 2
tunit = self.tunit
print 'generate tensorfile with tunit:{}, tbins:{}'.format(tunit,
tbindic[tunit])
if self.matricizetenor is None:
matricize_start = time.clock()
sm, rindexcol = self.tenormatricization(self.tspim, self.ratepim,
tbindic, rbins, mtype=coo_matrix,
dropweight=self.priordropslop,
logdegree=False)
self.matricizetenor = sm
print '::::matricize time cost: ', time.clock() - matricize_start
sm = self.matricizetenor
print "matricize {}x{} and svd dense... ..."\
.format(sm.shape[0], sm.shape[1])
u, s, vt = slin.svds(sm, k=numSing, which='LM')
u = np.fliplr(u)
s = s[::-1]
CU, CV = [],[]
for i in xrange(self.numSing):
ui = u[:, i]
si = s[i]
if abs(max(ui)) < abs(min(ui)):
ui = -1*ui
if type(rbd) is float:
sqrtSi = math.sqrt(si)
ui *= sqrtSi
rbdrow= rbd
elif rbd == 'avg':
rbdrow = 1.0/math.sqrt(self.nU)
else:
print 'unkown rbd {}'.format(rbd)
rows = np.argsort(-ui, axis=None, kind='quicksort')
for jr in xrange(len(rows)):
r = rows[jr]
if ui[r] <= rbdrow:
break
self.avgexponents.append(math.log(jr, self.nU))
'consider the # limit'
if self.nU > 1e6:
e0 = self.e0
ep = max(1.6, 2.0/(3-e0))
nn = sm.shape[0] + sm.shape[1]
nlimit = int(math.ceil(nn**(1/ep)))
cutrows = rows[:min(jr,nlimit)]
else:
cutrows = rows[:jr]
CU.append(cutrows)
self.CU = np.array(CU)
self.CV = np.array(CV)
return
def initfastgreedy2D(self, numSing, rbd):
'rbd threshold that cut the singular vecotors, default is avg'
'parameters for fastgreedy'
u, s, vt = slin.svds(self.graphr.astype(np.float64), k=numSing, which='LM')
#revert to make the largest singular values and vectors in the front
u = np.fliplr(u)
vt = np.flipud(vt)
s = s[::-1]
self.U = []
self.V = []
self.CU = []
self.CV = []
for i in xrange(self.numSing):
ui = u[:, i]
vi = vt[i, :]
si = s[i]
if abs(max(ui)) < abs(min(ui)):
ui = -1*ui
if abs(max(vi)) < abs(min(vi)):
vi = -1*vi
if type(rbd) is float:
sqrtSi = math.sqrt(si)
ui *= sqrtSi
vi *= sqrtSi
rbdrow, rbdcol = rbd, rbd
elif rbd == 'avg':
rbdrow = 1.0/math.sqrt(self.nU)
rbdcol = 1.0/math.sqrt(self.nV)
else:
print 'unkown rbd {}'.format(rbd)
rows = np.argsort(-ui, axis=None, kind='quicksort')
cols = np.argsort(-vi, axis=None, kind='quicksort')
for jr in xrange(len(rows)):
r = rows[jr]
if ui[r] <= rbdrow:
break
self.avgexponents.append(math.log(jr, self.nU))
if self.nU > 5e5:
e0=self.e0
ep = max(1.6, 2.0/(3-e0))
nn = self.nU + self.nV
nlimit = int(math.ceil(nn**(1.0/ep)))
cutrows = rows[:min(jr,nlimit)]
else:
cutrows = rows[:jr]
for jc in xrange(len(cols)):
c = cols[jc]
if vi[c] <= rbdcol:
break
cutcols = cols[:jc]
'begin debug'
self.U.append(ui)
self.V.append(vi)
'end debug'
self.CU.append(cutrows)
self.CV.append(cutrows)
self.CU = np.array(self.CU)
self.CV = np.array(self.CV)
return
def qfunc(self, ratios, fbs=None, scale='exp', numratios=1):
if self.aggmethod == 'rank':
'do not use qfun if it is rank aggregation'
return ratios
if self.suspbd <= 0.0:
greatbdidx = ratios > 0.0
else:
greatbdidx = ratios >= self.suspbd
lessbdidx = ratios < self.suspbd
'picewise q funciton if < suspbd, i.e. epsilon'
ratios[lessbdidx] = 0.0
'picewise q funciton if >= suspbd, i.e. epsilon'
if scale == 'exp':
ratios[greatbdidx] = self.expbase**(ratios[greatbdidx]-numratios)
elif scale == 'pl':
ratios[greatbdidx] = ratios[greatbdidx]**self.b
elif scale == 'lin':
ratios[greatbdidx] = np.fmax(self.b*(ratios[greatbdidx]-1)+1, 0)
else:
print 'unrecognized scale: ' + scale
sys.exit(1)
return ratios
def setdeltapimsusp(self, z, ysuspusers, add):
if Ptype.ts in self.ptype:
self.tspim.deltasuspects(z, ysuspusers, add)
if Ptype.rate in self.ptype:
self.ratepim.deltasuspects(z, ysuspusers, add)
return
def removecurrentblock(self, rows):
'''it is for find second block, remove rows from
self.graph, self.matricizetenor
'''
print 'removing {} rows from graph'.format(len(rows))
lilm = self.graph.tolil()
lilm[rows,:]=0
self.graph=lilm.tocoo()
self.graphc= lilm.tocsc()
self.graphr = self.graph.tocsr()
if self.matricizetenor is not None:
print 'removing {} rows from tensor'.format(len(rows))
lilmm = self.matricizetenor.tolil()
lilmm[rows,:] = 0
self.matricizetenor = lilmm.tocoo()
return
#@profile
def fastgreedy(self):
'adding and deleting greed algorithm'
'No Need: user order for r with obj fuct'
self.fastlocalbest = []
self.fastbestvx = 0
self.fastbestA, self.fastbestfbs, self.fastbestbsusps = \
np.zeros(self.nU), np.zeros(self.nV), np.zeros(self.nV)
for k in xrange(self.numSing):
print 'process {}-th singular vector'.format(k+1)
lenCU = len(self.CU[k])
if lenCU == 0:
continue
print '*** *** shaving ...'
A0 = np.zeros(self.nU, dtype=int)
A0[self.CU[k]]=1 #shaving from sub singluar space
#import ipdb;ipdb.set_trace()
#print 'debug: init size: ', A0.sum()
self.start(A0, ptype=self.ptype)
self.greedyshaving()
print '*** *** shaving opt size: {}'.format(sum(self.bestA))
print '*** *** shaving opt value: {}'.format(self.bestvx)
if self.fastbestvx < self.bestvx:
self.fastbestvx = self.bestvx
self.fastbestA = np.array(self.bestA)
self.fastbestfbs = np.array(self.bestfbs)
self.fastbestbsusps = np.array(self.bestbsusps)
print '=== === improved opt size: {}'.format(sum(self.fastbestA))
print '=== === improved opt value: {}'.format(self.fastbestvx)
brankscores = np.multiply(self.bestbsusps, self.bestfbs)
A = self.bestA.nonzero()[0]
self.fastlocalbest.append((self.bestvx, (A, brankscores)))
'clear shaving best'
self.bestvx = 0
self.bestvx, self.bestA, self.bestfbs, self.bestbsusps = \
self.fastbestvx, self.fastbestA, \
self.fastbestfbs, self.fastbestbsusps
return
def drawObjectiveCurve(self, outfig):
import matplotlib.pyplot as plt
fig = plt.figure()
plt.plot(self.vxs, '-')
plt.title('The convergence curve of simulated anealing.')
plt.xlabel('# of iterations')
plt.ylabel('objective value')
if outfig is not None:
fig.savefig(outfig)
return fig
def HoloScope(wmat, alg, ptype, qfun, b, ratefile=None, tsfile=None,
tunit='s', numSing=10, nblock=1):
'''
The interface of HoloScope algorithm for external use
Parameters
----------
wmat: str or sparse matrix
If it is str, wmat is the input file name. We load the file into sparse
matrix. If it is sparse matrix, we just use wmat.
alg: str
which algorithm you are going to use. You can choose 'greedy' for
synthetic data (#rows+#cols<10000); or 'fastgreedy' for any size of data
sets.
ptype: list
contains which attributes the algorithm is going to use. The hololisc
use of all siginals is [Ptype.freq, Ptype.ts, Ptype.rate]
qfun: str
which kind of qfun the algorithm uses, choosing from 'exp' for
exponential (recommended), 'pl' for power-law, 'lin' for linear
b: float
The base of exponetial qfun, or the exponent of power-law qfun, or
absolute slope of linear qfun
ratefile: str or None
The file name with path for user-object rating sequences. The file
format is that each line looks like 'userid-objectid:#star1 #star2 ...\n'
tsfile: str or None
The file name with path for user-object timestamp sequences. The file
format is that each line looks like 'userid-objectid:t1 t2 ...\n'
tunit: str (only support 's' or 'd') or None
The time unit of input time
e.g. in amazon and yelp data, the time is date, i.e. tunit='d'.
We use # of days (integer) from the earlest date as input
numSing: int
The number of first left singular vectors used in our algorithm
nblock: int
The number of block we need from the algorithm
Return
---------
(gbestvx, (gsrows, gbscores)), opt
Block (gsrows, gbscores) has the best objective values 'gbestvx' among
*nblock* blocks.
gbestvx: float
the best objective value of the *nblock* blocks.
gsrows: list
is the list of suspicious rows.
gbscores: list
is the suspicoius scores for every objects. The index is object id,
and value is the score. With the scores, you can get the suspicious rank
of the objects.
opt: instance of HoloScopeOpt class
the class instance which contains all the *nblock* blocks in opt.nbests.
opt.nbests: list
This is the list contains *nblock* solutions in the form of
tuple, i.e., (opt.bestvx, (srows, bscores))
'''
print 'initial...'
if sci.sparse.issparse(wmat) is False and os.path.isfile(wmat):
sm = loadedge2sm(wmat, coo_matrix, weighted=True, idstartzero=True)
else:
sm = wmat.tocoo()
inprop = 'Considering '
if Ptype.freq in ptype:
inprop += '+[topology] '
if Ptype.ts in ptype:
assert(os.path.isfile(tsfile))
inprop += '+[timestamps] '
#elif tsfile is not None:
#consider sdrop by default when Ptype.ts
inprop += '+[sudden drop]'
else:
tsfile=None
if Ptype.rate in ptype:
assert(os.path.isfile(ratefile))
inprop += '+[rating i.e. # of stars] '
else:
ratefile = None
print inprop
opt = HoloScopeOpt(sm, qfun=qfun, b=b, tsfile=tsfile, tunit=tunit, ratefile=ratefile)
opt.nbests=[]
opt.nlocalbests=[] #mainly used for fastgreedy
gsrows,gbscores,gbestvx = 0,0,0
for k in xrange(nblock):
start_time = time.clock()
if alg == 'greedy':
n1, n2 = sm.shape
if n1 + n2 > 1e4:
print '[Warning] alg {} is slow for size {}x{}'\
.format(alg, n1, n2)
A = np.ones(opt.nU,dtype=int)
print 'initial start'
opt.start(A, ptype=ptype)
print 'greedy shaving algorithm ...'
opt.greedyshaving()
elif alg == 'fastgreedy':
print """alg: {}\n\t+ # of singlular vectors: {}\n""".format(alg, numSing)
print 'initial start'
opt.initfastgreedy(ptype, numSing)
print "::::Finish Init @ ", time.clock() - start_time
print 'fast greedy algorithm ...'
opt.fastgreedy()
opt.nlocalbests.append(opt.fastlocalbest)
else:
print 'No such algorithm: '+alg
sys.exit(1)
print "::::Finish Algorithm @ ", time.clock() - start_time
srows = opt.bestA.nonzero()[0]
bscores = np.multiply(opt.bestfbs, opt.bestbsusps)
opt.nbests.append((opt.bestvx, (srows, bscores)))
gsrows, gbscores, gbestvx = (srows,bscores,opt.bestvx) \
if gbestvx < opt.bestvx else (gsrows, gbscores, gbestvx)
if k < nblock-1:
opt.removecurrentblock(srows)
print 'global best size ', len(gsrows)
print 'global best value ', gbestvx
return (gbestvx, (gsrows, gbscores)), opt