-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembed.py
46 lines (38 loc) · 1.2 KB
/
embed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import json
from langchain_community.document_loaders import (
BSHTMLLoader,
DirectoryLoader,
)
from langchain_openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from dotenv import load_dotenv
load_dotenv()
loader = DirectoryLoader(
"./scrape",
glob="*.html",
loader_cls=BSHTMLLoader,
show_progress=True,
loader_kwargs={"get_text_separator": " "},
)
data = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
documents = text_splitter.split_documents(data)
# map sources from file directory to web source
with open("./scrape/sitemap.json", "r") as f:
sitemap = json.loads(f.read())
for document in documents:
document.metadata["source"] = sitemap[
document.metadata["source"].replace(".html", "").replace("scrape/", "")
]
embedding_model = OpenAIEmbeddings(model="text-embedding-3-small")
#embedding_model = OpenAIEmbeddings(model="text-embedding-ada-002")
db = Chroma.from_documents(
documents,
embedding_model,
persist_directory="./chroma"
)
db.persist()