This repository was archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathmain.d
288 lines (252 loc) · 6.04 KB
/
main.d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import std.string;
import std.stdio;
import gfm.math;
// Provide numbers for improving performance of some operations.
// suggested cmdline: dub -b release-nobounds -a x86_64 --combined --compiler ldc2
void main()
{
getCurrentThreadHandle();
int N = 1024;
int N4 = N / 4;
int N8 = N / 8;
int N44 = N / (4*4);
float[] A = new float[N];
float[] B = new float[N];
float[] C = new float[N];
for (int i = 0; i < N; ++i)
{
A[i] = i * 0.001f + 0.0001f;
B[i] = i * 0.001f + 0.0001f;
C[i] = 0;
}
bool precise = true;
void benchmark(string title, void delegate() fun, int measures)
{
writeln(title);
double[] samples = testFunN(fun, measures, precise);
double minTime = double.infinity;
foreach(m; samples)
{
if (minTime > m)
minTime = m;
}
writefln(" => minimum time: %s", convertMicroSecondsToDisplay(minTime));
}
// Test vec4f additions
vec4f* pAf = cast(vec4f*)(A.ptr);
vec4f* pBf = cast(vec4f*)(A.ptr);
vec4f* pCf = cast(vec4f*)(A.ptr);
benchmark("vec4f+scalar",
{
for (int k = 0; k < 1024*32; ++k)
{
for (int i = 0; i < N4; ++i)
{
pCf[i] = pAf[i] + B[i];
}
}
}, 100);
benchmark("vec4f*scalar",
{
for (int k = 0; k < 1024*32; ++k)
{
for (int i = 0; i < N4; ++i)
{
pCf[i] = pAf[i] * B[i];
}
}
}, 100);
benchmark("vec4f-scalar",
{
for (int k = 0; k < 1024*32; ++k)
{
for (int i = 0; i < N4; ++i)
{
pCf[i] = pAf[i] - B[i];
}
}
}, 100);
benchmark("vec4f/scalar",
{
for (int k = 0; k < 1024*32; ++k)
{
for (int i = 0; i < N4; ++i)
{
pCf[i] = pAf[i] / B[i];
}
}
}, 100);
benchmark("scalar+vec4f",
{
for (int k = 0; k < 1024*32; ++k)
{
for (int i = 0; i < N4; ++i)
{
pCf[i] = A[i] + pBf[i];
}
}
}, 100);
benchmark("scalar*vec4f",
{
for (int k = 0; k < 1024*32; ++k)
{
for (int i = 0; i < N4; ++i)
{
pCf[i] = A[i] * pBf[i];
}
}
}, 100);
benchmark("scalar-vec4f-",
{
for (int k = 0; k < 1024*32; ++k)
{
for (int i = 0; i < N4; ++i)
{
pCf[i] = A[i] - pBf[i];
}
}
}, 100);
benchmark("scalar/vec4f",
{
for (int k = 0; k < 1024*32; ++k)
{
for (int i = 0; i < N4; ++i)
{
pCf[i] = A[i] / pBf[i];
}
}
}, 100);
benchmark("vec4f+vec4f",
{
for (int k = 0; k < 1024*32; ++k)
{
for (int i = 0; i < N4; ++i)
{
pCf[i] = pAf[i] + pBf[i];
}
}
}, 100);
benchmark("vec4f+=vec4f",
{
for (int k = 0; k < 1024*32; ++k)
{
for (int i = 0; i < N4; ++i)
{
pCf[i] += pAf[i];
}
}
}, 100);
benchmark("vec4f*=vec4f",
{
for (int k = 0; k < 1024*32; ++k)
{
for (int i = 0; i < N4; ++i)
{
pCf[i] *= pAf[i];
}
}
}, 100);
benchmark("vec4f*vec4f",
{
for (int k = 0; k < 1024*32; ++k)
{
for (int i = 0; i < N4; ++i)
{
pCf[i] = pAf[i] * pBf[i];
}
}
}, 100);
benchmark("vec4f-vec4f",
{
for (int k = 0; k < 1024*32; ++k)
{
for (int i = 0; i < N4; ++i)
{
pCf[i] = pAf[i] - pBf[i];
}
}
}, 100);
benchmark("vec4f/vec4f",
{
for (int k = 0; k < 1024*32; ++k)
{
for (int i = 0; i < N4; ++i)
{
pCf[i] = pAf[i] / pBf[i];
}
}
}, 100);
}
// return a time in us
double testFun(void delegate() fun, bool precise)
{
long before = getTickUs(precise);
fun();
long after = getTickUs(precise);
return after - before;
}
// return samples of measurements
double[] testFunN(void delegate() fun, int measures, bool precise)
{
double[] res;
foreach(i; 0..measures)
{
double time = testFun(fun, precise);
res ~= time;
}
return res;
}
version(Windows)
{
import core.sys.windows.windows;
__gshared HANDLE hThread;
extern(Windows) BOOL QueryThreadCycleTime(HANDLE ThreadHandle, PULONG64 CycleTime) nothrow @nogc;
long qpcFrequency;
void getCurrentThreadHandle()
{
hThread = GetCurrentThread();
QueryPerformanceFrequency(&qpcFrequency);
}
}
else
{
void getCurrentThreadHandle()
{
}
}
static long getTickUs(bool precise) nothrow @nogc
{
version(Windows)
{
if (precise)
{
// Note about -precise measurement
// We use the undocumented fact that QueryThreadCycleTime
// seem to return a counter in QPC units.
// That may not be the case everywhere, so -precise is not reliable and should
// never be the default.
import core.sys.windows.windows;
ulong cycles;
BOOL res = QueryThreadCycleTime(hThread, &cycles);
assert(res != 0);
real us = 1000.0 * cast(real)(cycles) / cast(real)(qpcFrequency);
return cast(long)(0.5 + us);
}
else
{
import core.time;
return convClockFreq(MonoTime.currTime.ticks, MonoTime.ticksPerSecond, 1_000_000);
}
}
else
{
import core.time;
return convClockFreq(MonoTime.currTime.ticks, MonoTime.ticksPerSecond, 1_000_000);
}
}
// Returns: "0.1 ms" when given 100 us
string convertMicroSecondsToDisplay(double us)
{
double ms = (us / 1000.0);
return format("%.3f ms", ms);
}