-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cnn_adv_detector.m
50 lines (33 loc) · 1.17 KB
/
train_cnn_adv_detector.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
%attack_name = "DeepFoolAttack";
%attack_name = "GradientAttack";
attack_name = "LBFGSAttack";
data_folder = str2mat('training_data/' + attack_name +'/input_images');
imds = imageDatastore(data_folder,'IncludeSubfolders',true,'LabelSource','foldernames');
numTrainFiles = 750;
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize');
layers = [
imageInputLayer([28 28 1])
convolution2dLayer(3,8,'Padding',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,16,'Padding',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,32,'Padding',1)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(2)
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm', ...
'MaxEpochs',4, ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(imdsTrain,layers,options);
YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;
accuracy = sum(YPred == YValidation)/numel(YValidation)