forked from GoogleCloudPlatform/cloudml-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer.py
259 lines (205 loc) · 8.54 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import numpy as np
import tensorflow as tf
from tensorflow.contrib import summary
N_CLASSES = 10
# Making the filter sizes a global variable so it's eaiser to coordinate
# between the modulation sub-network and the convolutional classifier
# sub-network.
FILTER_SIZES = [32, 64]
# A linear modulation will be applied to every filter/feature map.
N_FILM = sum(FILTER_SIZES)
# ## Feature-wise Linear Modulation Layer
#
# The feature-wise linear modulation layer is a network architecture design
# that allows contextual inputs to modulate classification layers.
#
# For details, see [FiLM: Visual Reasoning with a General Conditioning Layer](https://arxiv.org/abs/1709.07871).
#
class FeaturewiseLinearModulationLayer(tf.keras.layers.Layer):
def call(self, input_, gamma, beta):
# The user is responsible for having the correct shapes
return gamma * input_ + beta
# ## The model function
#
# The network consists of two sub-networks:
#
# * Label classifier: A feedforward network (here convolutional).
# It is linearly modulated at intermediate outputs.
#
# * Modulation: A separate sub-network that learns the modulation parameters.
#
def model_fn(features, labels, mode, params):
x = features['x']
modulation_data = features['modulation_data']
onehot_labels = tf.one_hot(labels, N_CLASSES)
batch_size = params.get('batch_size', None) or params['train_batch_size']
global_step = tf.train.get_global_step()
# In this sample we use dense layers for the modulation sub-network.
# Its output has shape (batch_size, 2 * N_FILM) since each FiLM layer has
# two parameters.
modulation_hidden = tf.keras.layers.Dense(128, activation=tf.nn.relu)(modulation_data)
# We want to allow negative modulation parameters.
# Here we just use the linear activation.
modulation_parameters = tf.keras.layers.Dense(2 * N_FILM)(modulation_hidden)
all_gamma = modulation_parameters[:, :N_FILM]
all_beta = modulation_parameters[:, N_FILM:]
# Convolutional layers for the label classifier.
filter_0 = FILTER_SIZES[0]
conv_0 = tf.keras.layers.Conv2D(filters=filter_0, kernel_size=(3, 3))(x)
# Apply FiLM before the ReLU activation.
# Reshape the modulation parameters manually.
gamma_0 = all_gamma[:, None, None, :filter_0]
beta_0 = all_beta[:, None, None, :filter_0]
filmed_conv_0 = FeaturewiseLinearModulationLayer()(conv_0, gamma_0, beta_0)
conv_out_0 = tf.nn.relu(filmed_conv_0)
# Do the same for the next convolutional block
filter_1 = FILTER_SIZES[1]
conv_1 = tf.keras.layers.Conv2D(filters=filter_1, kernel_size=(3, 3))(conv_out_0)
gamma_1 = all_gamma[:, None, None, -filter_1:]
beta_1 = all_beta[:, None, None, -filter_1:]
filmed_conv_1 = FeaturewiseLinearModulationLayer()(conv_1, gamma_1, beta_1)
conv_out_1 = tf.nn.relu(filmed_conv_1)
# Fully connected logits output
flattened = tf.reshape(conv_out_1, (batch_size, -1))
label_classification_logits = tf.keras.layers.Dense(N_CLASSES)(flattened)
predictions = tf.nn.softmax(label_classification_logits)
loss = None
train_op = None
if mode == tf.estimator.ModeKeys.TRAIN:
# define loss
loss = tf.losses.softmax_cross_entropy(
onehot_labels=onehot_labels,
logits=label_classification_logits
)
# define train_op
optimizer = tf.train.RMSPropOptimizer(learning_rate=0.05)
# wrapper to make the optimizer work with TPUs
if params['use_tpu']:
optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
train_op = optimizer.minimize(loss, global_step=global_step)
if params['use_tpu']:
# TPU version of EstimatorSpec
return tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op)
else:
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op)
# ## The input function
#
def train_input_fn(params={}):
# labaled image data
x = np.random.rand(100, 28, 28, 3)
y = np.random.randint(0, N_CLASSES, 100)
# additional input data for modulation
modulation_data = np.random.rand(100, 5)
x_tensor = tf.constant(x, dtype=tf.float32)
y_tensor = tf.constant(y, dtype=tf.int32)
modulation_data_tensor = tf.constant(modulation_data, dtype=tf.float32)
# make a dataset
dataset = tf.data.Dataset.from_tensor_slices((x_tensor, y_tensor, modulation_data_tensor))
# TPUEstimator passes params when calling input_fn
batch_size = params.get('batch_size', 16)
dataset = dataset.repeat().shuffle(32).batch(batch_size, drop_remainder=True)
# TPUs need to know all dimensions when the graph is built
# Datasets know the batch size only when the graph is run
def set_shapes_and_format(x, y, modulation_data):
"""Set the batch_size of the input tensors and returns a
pair (features, labels).
"""
x_shape = x.get_shape().merge_with([batch_size, None, None, None])
y_shape = y.get_shape().merge_with([batch_size])
modulation_data_shape = modulation_data.get_shape().merge_with([batch_size, None])
x.set_shape(x_shape)
y.set_shape(y_shape)
modulation_data.set_shape(modulation_data_shape)
# Also format the dataset with a dict for features
features = {'x': x, 'modulation_data': modulation_data}
labels = y
return features, labels
dataset = dataset.map(set_shapes_and_format)
dataset = dataset.prefetch(tf.contrib.data.AUTOTUNE)
return dataset
def main(args):
# pass the args as params so the model_fn can use
# the TPU specific args
params = vars(args)
if args.use_tpu:
# additional configs required for using TPUs
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(args.tpu)
tpu_config = tf.contrib.tpu.TPUConfig(
num_shards=8, # using Cloud TPU v2-8
iterations_per_loop=args.save_checkpoints_steps)
# use the TPU version of RunConfig
config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
model_dir=args.model_dir,
tpu_config=tpu_config,
save_checkpoints_steps=args.save_checkpoints_steps,
save_summary_steps=100)
# TPUEstimator
estimator = tf.contrib.tpu.TPUEstimator(
model_fn=model_fn,
config=config,
params=params,
train_batch_size=args.train_batch_size,
eval_batch_size=32,
export_to_tpu=False)
else:
config = tf.estimator.RunConfig(model_dir=args.model_dir)
estimator = tf.estimator.Estimator(
model_fn,
config=config,
params=params)
estimator.train(train_input_fn, max_steps=args.max_steps)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--model-dir',
type=str,
default='/tmp/tpu-template',
help='Location to write checkpoints and summaries to. Must be a GCS URI when using Cloud TPU.')
parser.add_argument(
'--max-steps',
type=int,
default=1000,
help='The total number of steps to train the model.')
parser.add_argument(
'--train-batch-size',
type=int,
default=16,
help='The training batch size. The training batch is divided evenly across the TPU cores.')
parser.add_argument(
'--save-checkpoints-steps',
type=int,
default=100,
help='The number of training steps before saving each checkpoint.')
parser.add_argument(
'--use-tpu',
action='store_true',
help='Whether to use TPU.')
parser.add_argument(
'--tpu',
default=None,
help='The name or GRPC URL of the TPU node. Leave it as `None` when training on CMLE.')
args, _ = parser.parse_known_args()
main(args)