forked from GoogleCloudPlatform/cloudml-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer_infeed_outfeed.py
222 lines (158 loc) · 7.1 KB
/
trainer_infeed_outfeed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Reference: https://colab.research.google.com/gist/rjpower/169b2843a506d090f47d25122f82a28f
import argparse
from functools import partial
import numpy as np
import os
import threading
import tensorflow as tf
from tensorflow.contrib.cluster_resolver import TPUClusterResolver
def build_model(features):
hidden = tf.layers.dense(features, 10, activation=tf.nn.relu)
outputs = tf.layers.dense(hidden, 1)
return outputs
def fit_batch(features, labels):
# inner function that specifies one step of calculation to be done on TPU.
outputs = build_model(features)
loss = tf.nn.l2_loss(outputs - labels)
optimizer = tf.train.RMSPropOptimizer(learning_rate=0.05)
# Wrap the optimizer
optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
global_step = tf.train.get_or_create_global_step()
train_op = optimizer.minimize(loss, global_step=global_step)
return global_step, loss, train_op
def tpu_computation_with_infeed(batch_size, num_shards):
# This function wrap around `fit_batch` and handles infeed/outfeed queues from the perspective of a TPU device.
# The infeed queue is implicit and the tensors in it are not passed in as function arguments like in model_fn.
features, labels = tf.contrib.tpu.infeed_dequeue_tuple(
# the dtypes and shapes need to be consistent with what is fed into the infeed queue.
dtypes=[tf.float32, tf.float32],
shapes=[(batch_size // num_shards, 5), (batch_size // num_shards)]
)
global_step, loss, train_op = fit_batch(features, labels)
# TPU functions must return zero-or more Tensor values followed by zero or more Operations.
# The outfeed queue is also implicit.
return tf.contrib.tpu.outfeed_enqueue_tuple((global_step, loss)), train_op
def setup_feed(features, labels, num_shards):
# This function handles infeed/outfeed queues from the perspective of the CPU.
infeed_ops = []
outfeed_ops = []
infeed_batches = zip(tf.split(features, num_shards), tf.split(labels, num_shards))
for i, batch in enumerate(infeed_batches):
infeed_op = tf.contrib.tpu.infeed_enqueue_tuple(
batch,
[b.shape for b in batch],
device_ordinal=i
)
infeed_ops.append(infeed_op)
outfeed_op = tf.contrib.tpu.outfeed_dequeue_tuple(
dtypes=[tf.int64, tf.float32],
shapes=[(), ()],
device_ordinal=i
)
outfeed_ops.append(outfeed_op)
return infeed_ops, outfeed_ops
def train_input_fn():
# data input function runs on the CPU, not TPU
# make some fake regression data
x = np.random.rand(100, 5)
w = np.random.rand(5)
y = np.sum(x * w, axis=1)
# TPUs currently do not support float64
x_tensor = tf.constant(x, dtype=tf.float32)
y_tensor = tf.constant(y, dtype=tf.float32)
# create tf.data.Dataset
dataset = tf.data.Dataset.from_tensor_slices((x_tensor, y_tensor))
# TPUs need to know all dimensions including batch size
batch_size = 16
dataset = dataset.repeat().shuffle(32).batch(batch_size)#, drop_remainder=True)
# TPUs need to know all dimensions when the graph is built
# Datasets know the batch size only when the graph is run
def set_shapes(features, labels):
features_shape = features.get_shape().merge_with([batch_size, None])
labels_shape = labels.get_shape().merge_with([batch_size])
features.set_shape(features_shape)
labels.set_shape(labels_shape)
return features, labels
dataset = dataset.map(set_shapes)
dataset = dataset.prefetch(tf.contrib.data.AUTOTUNE)
return dataset
def main(args):
# Unpack the tensor batch to be used to set up the infeed/outfeed queues.
dataset = train_input_fn()
iterator = dataset.make_one_shot_iterator()
features, labels = iterator.get_next()
infeed_ops, outfeed_ops = setup_feed(features, labels, num_shards=8)
# Wrap the tpu computation function to be run in a loop.
def computation_loop():
return tf.contrib.tpu.repeat(args.max_steps, partial(tpu_computation_with_infeed, batch_size=16, num_shards=8))
# Since we are using infeed/outfeed queues, tensors are not explicitly passed in or returned.
tpu_computation_loop = tf.contrib.tpu.batch_parallel(computation_loop, num_shards=8)
# utility ops
tpu_init = tf.contrib.tpu.initialize_system()
tpu_shutdown = tf.contrib.tpu.shutdown_system()
variables_init = tf.global_variables_initializer()
saver = tf.train.Saver()
# get the TPU resource's grpc url
# Note: when running on CMLE, args.tpu should be left as None
tpu_grpc_url = TPUClusterResolver(tpu=args.tpu).get_master()
sess = tf.Session(tpu_grpc_url)
# Use separate threads to run infeed and outfeed.
def _run_infeed():
for i in range(args.max_steps):
sess.run(infeed_ops)
if i % args.save_checkpoints_steps == 0:
print('infeed {}'.format(i))
def _run_outfeed():
for i in range(args.max_steps):
outfeed_data = sess.run(outfeed_ops)
if i % args.save_checkpoints_steps == 0:
print('outfeed {}'.format(i))
print('data returned from outfeed: {}'.format(outfeed_data))
saver.save(sess, os.path.join(args.model_dir, 'model.ckpt'), global_step=i)
infeed_thread = threading.Thread(target=_run_infeed)
outfeed_thread = threading.Thread(target=_run_outfeed)
sess.run(tpu_init)
sess.run(variables_init)
infeed_thread.start()
outfeed_thread.start()
sess.run(tpu_computation_loop)
infeed_thread.join()
outfeed_thread.join()
sess.run(tpu_shutdown)
saver.save(sess, os.path.join(args.model_dir, 'model.ckpt'), global_step=args.max_steps)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--model-dir',
type=str,
default='/tmp/tpu-template',
help='Location to write checkpoints and summaries to. Must be a GCS URI when using Cloud TPU.')
parser.add_argument(
'--max-steps',
type=int,
default=1000,
help='The total number of steps to train the model.')
parser.add_argument(
'--save-checkpoints-steps',
type=int,
default=100,
help='The number of training steps before saving each checkpoint.')
parser.add_argument(
'--tpu',
default=None,
help='The name or GRPC URL of the TPU node. Leave it as `None` when training on CMLE.')
args, _ = parser.parse_known_args()
main(args)