forked from mlrun/functions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
catalog.yaml
379 lines (379 loc) · 9.34 KB
/
catalog.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
aggregate:
categories:
- data-prep
description: Rolling aggregation over Metrics and Lables according to specifications
docfile: aggregate/aggregate.ipynb
kind: job
versions:
latest: aggregate/function.yaml
arc-to-parquet:
categories:
- data-movement
- utils
description: retrieve remote archive, open and save as parquet
docfile: arc_to_parquet/arc_to_parquet.ipynb
kind: job
versions:
latest: arc_to_parquet/function.yaml
bert-embeddings:
categories:
- NLP
- BERT
- embeddings
description: Get BERT based embeddings for given text
docfile: bert_embeddings/bert_embeddings.ipynb
kind: remote
versions:
latest: bert_embeddings/function.yaml
churn-server:
categories:
- serving
- ml
description: churn classification and predictor
docfile: churn_server/churn_server.ipynb
kind: serving
versions:
latest: churn_server/function.yaml
concept-drift:
categories:
- ml
- serve
description: Deploy a streaming Concept Drift detector on a labeled stream
docfile: concept_drift/concept_drift.ipynb
kind: job
versions:
latest: concept_drift/function.yaml
concept-drift-streaming:
categories:
- ml
- serve
description: Deploy a streaming Concept Drift detector on a labeled stream. the
nuclio part of the concept_drift function
docfile: concept_drift_streaming/concept_drift_streaming.ipynb
kind: remote
versions:
latest: concept_drift_streaming/function.yaml
coxph-test:
categories:
- ml
- test
description: Test cox proportional hazards model
docfile: coxph_test/coxph_test.ipynb
kind: job
versions:
latest: coxph_test/function.yaml
coxph-trainer:
categories:
- training
- ml
description: cox proportional hazards, kaplan meier plots
docfile: coxph_trainer/coxph_trainer.ipynb
kind: job
versions:
latest: coxph_trainer/function.yaml
describe:
categories:
- analysis
description: describe and visualizes dataset stats
docfile: describe/describe.ipynb
kind: job
versions:
latest: describe/function.yaml
describe-dask:
categories:
- analysis
description: describe and visualizes dataset stats
docfile: describe_dask/describe_dask.ipynb
kind: job
versions:
latest: describe_dask/function.yaml
describe-spark:
categories: []
description: ''
docfile: describe_spark/describe_spark.ipynb
kind: job
versions:
latest: describe_spark/function.yaml
feature-perms:
categories:
- analysis
description: estimate feature importances using permutations
docfile: feature_perms/feature_perms.ipynb
kind: job
versions:
latest: feature_perms/function.yaml
feature-selection:
categories:
- data-prep
- ml
description: Select features through multiple Statistical and Model filters
docfile: feature_selection/feature_selection.ipynb
kind: job
versions:
latest: feature_selection/function.yaml
gen-class-data:
categories:
- data-prep
description: Create a binary classification sample dataset and save.
docfile: gen_class_data/gen_class_data.ipynb
kind: job
versions:
latest: gen_class_data/function.yaml
github-utils:
categories:
- notifications
- utils
description: add comments to github pull request
docfile: github_utils/github_utils.ipynb
kind: job
versions:
latest: github_utils/function.yaml
load-dask:
categories:
- data-movement
- utils
description: load dask cluster with data
docfile: load_dask/load_dask.ipynb
kind: dask
versions:
latest: load_dask/function.yaml
load-dataset:
categories:
- data-source
- ml
description: load a toy dataset from scikit-learn
docfile: load_dataset/load_dataset.ipynb
kind: job
versions:
latest: load_dataset/function.yaml
model-monitoring-batch:
categories: []
description: ''
docfile: model_monitoring_batch/model_monitoring_batch.ipynb
kind: job
versions:
latest: model_monitoring_batch/function.yaml
model-monitoring-stream:
categories: []
description: ''
docfile: model_monitoring_stream/model_monitoring_stream.ipynb
kind: remote
versions:
latest: model_monitoring_stream/function.yaml
model-server:
categories:
- serving
- ml
description: generic sklearn model server
docfile: model_server/model_server.ipynb
kind: remote
versions:
latest: model_server/function.yaml
model-server-tester:
categories:
- ml
- test
description: test model servers
docfile: model_server_tester/model_server_tester.ipynb
kind: job
versions:
latest: model_server_tester/function.yaml
open-archive:
categories:
- data-movement
- utils
description: Open a file/object archive into a target directory
docfile: open_archive/open_archive.ipynb
kind: job
versions:
latest: open_archive/function.yaml
pandas-profiling-report:
categories:
- analysis
description: Create Pandas Profiling Report from Dataset
docfile: pandas_profiling_report/pandas_profiling_report.ipynb
kind: job
versions:
latest: pandas_profiling_report/function.yaml
project-runner:
categories:
- utils
description: Nuclio based - Cron scheduler for running your MLRun projects
docfile: project_runner/project_runner.ipynb
kind: remote
versions:
latest: project_runner/function.yaml
rnn-serving:
categories:
- model-serving
description: deploy an rnn based stock analysis model server.
docfile: rnn_serving/rnn_serving.ipynb
kind: serving
versions:
latest: rnn_serving/function.yaml
send-email:
categories:
- notifications
description: Send Email messages through SMTP server
docfile: send_email/send_email.ipynb
kind: job
versions:
latest: send_email/function.yaml
sentiment-analysis-serving:
categories:
- serving
- NLP
- BERT
- sentiment analysis
description: BERT based sentiment classification model
docfile: sentiment_analysis_serving/sentiment_analysis_serving.ipynb
kind: serving
versions:
latest: sentiment_analysis_serving/function.yaml
sklearn-classifier:
categories:
- ml
- training
description: train any classifier using scikit-learn's API
docfile: sklearn_classifier/sklearn_classifier.ipynb
kind: job
versions:
latest: sklearn_classifier/function.yaml
sklearn-classifier-dask:
categories:
- ml
- training
- dask
description: train any classifier using scikit-learn's API over Dask
docfile: sklearn_classifier_dask/sklearn_classifier_dask.ipynb
kind: job
versions:
latest: sklearn_classifier_dask/function.yaml
slack-notify:
categories:
- ops
description: Send Slack notification
docfile: slack_notify/slack_notify.ipynb
kind: job
versions:
latest: slack_notify/function.yaml
spark-submit:
categories: []
description: ''
docfile: spark_submit/spark_submit.ipynb
kind: job
versions:
latest: spark_submit/function.yaml
sql-to-file:
categories:
- data-prep
description: SQL To File - Ingest data using SQL query
docfile: sql_to_file/sql_to_file.ipynb
kind: job
versions:
latest: sql_to_file/function.yaml
stream-to-parquet:
categories:
- ml
- serve
description: Saves a stream to Parquet and can lunch drift detection task on it
docfile: stream_to_parquet/stream_to_parquet.ipynb
kind: remote
versions:
latest: stream_to_parquet/function.yaml
test-classifier:
categories:
- ml
- test
description: test a classifier using held-out or new data
docfile: test_classifier/test_classifier.ipynb
kind: job
versions:
latest: test_classifier/function.yaml
tf1-serving:
categories:
- serving
- dl
description: tf1 image classification server
docfile: tf1_serving/tf1_serving.ipynb
kind: remote
versions:
latest: tf1_serving/function.yaml
tf2-serving:
categories:
- serving
- dl
description: tf2 image classification server
docfile: tf2_serving/tf2_serving.ipynb
kind: remote
versions:
latest: tf2_serving/function.yaml
tf2-serving-v2:
categories:
- serving
- dl
description: tf2 image classification server v2
docfile: tf2_serving_v2/tf2_serving_v2.ipynb
kind: serving
versions:
latest: tf2_serving_v2/function.yaml
v2-model-server:
categories:
- serving
- ml
description: generic sklearn model server
docfile: v2_model_server/v2_model_server.ipynb
kind: serving
versions:
latest: v2_model_server/function.yaml
v2-model-tester:
categories:
- ml
- test
description: test v2 model servers
docfile: v2_model_tester/v2_model_tester.ipynb
kind: job
versions:
latest: v2_model_tester/function.yaml
virtual-drift:
categories:
- ml
- serve
- concept-drift
description: Compute drift magnitude between Time-Samples T and U
docfile: virtual_drift/virtual_drift.ipynb
kind: job
versions:
latest: virtual_drift/function.yaml
xgb-custom:
categories:
- model-testing
description: simulate data with outliers.
docfile: xgb_custom/xgb_custom.ipynb
kind: job
versions:
latest: xgb_custom/function.yaml
xgb-serving:
categories:
- model-serving
description: deploy an XGBoost model server.
docfile: xgb_serving/xgb_serving.ipynb
kind: remote
versions:
latest: xgb_serving/function.yaml
xgb-test:
categories:
- model-test
description: Test one or more classifier models against held-out dataset.
docfile: xgb_test/xgb_test.ipynb
kind: job
versions:
latest: xgb_test/function.yaml
xgb-trainer:
categories:
- model-prep
description: train multiple model types using xgboost.
docfile: xgb_trainer/xgb_trainer.ipynb
kind: job
versions:
latest: xgb_trainer/function.yaml