-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreflections.py
44 lines (38 loc) · 1.24 KB
/
reflections.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import utils
import numpy as np
import numpy.linalg as lg
import math as ma
def omega(s, e):
al = ma.sqrt(float(np.dot(s.T, s)))
kappa = 1 / ma.sqrt(float(np.dot(s.T, s - al * e)) * 2)
return np.matrix((s - al * e) * kappa)
def main():
m, f = [float], [float]
with open('data/input.txt', mode='r') as file:
m = np.matrix(utils.parse(file))
f = np.matrix(utils.parse(file)).T
a, b = np.matrix(np.copy(m)), np.matrix(np.copy(f))
dim = len(m)
for k in range(dim - 1):
s = np.matrix([m[i, k] if i >= k else 0 for i in range(dim)]).T
e = np.matrix([0 if i != k else 1 for i in range(dim)]).T
try:
w = omega(s, e)
m -= 2 * np.dot(w, np.dot(w.T, m))
f -= 2 * np.dot(w, np.dot(w.T, f))
except ZeroDivisionError:
print(ZeroDivisionError)
x = np.array([float(0) for i in range(dim)]).T
for k in reversed(range(dim)):
s = sum([x[i] * m[k, i] for i in range(k, dim)])
x[k] = (f[k] - s) / m[k, k]
r = np.array(np.dot(a, x).T - b).T[0]
with open('summary/reflections.txt', mode='w+') as file:
file.write('x:')
[file.write('{:<15.5e}'.format(e)) for e in x]
file.write('\nr:')
[file.write('{:<15.5e}'.format(e)) for e in r]
file.write('\n||r|| = {:e}'.format(lg.norm(r.T, ord=np.inf)))
pass
if __name__ == '__main__':
main()