Skip to content

Latest commit

 

History

History
135 lines (105 loc) · 5.11 KB

README.md

File metadata and controls

135 lines (105 loc) · 5.11 KB

Python Version PyPI - Version Conda Version License: MIT GitHub last commit

Déjà Queue

A fast alternative to multiprocessing.Queue. Faster, because it takes advantage of a shared memory ring buffer (rather than slow pipes) and pickle protocol 5 out-of-band data to minimize copies. dejaq.DejaQueue supports any type of picklable Python object, including numpy arrays or nested dictionaries with mixed content.

The speed advantege of DejaQueue becomes substantial for items of > 1 MB size. It enables efficient inter-job communication in big-data processing pipelines, which can be implemented in a few lines of code with dejaq.Parallel.

Auto-generated (minimal) API documentation: https://danionella.github.io/dejaq

Installation

  • conda install danionella::dejaq

  • or, if you prefer pip: pip install dejaq

  • for development, clone this repository, navigate to the root directory and type pip install -e .

Examples

dejaq.DejaQueue

import numpy as np
from multiprocessing import Process
from dejaq import DejaQueue

def produce(queue):
    for i in range(10):
        arr = np.random.randn(100,200,300)
        data = dict(array=arr, i=i)
        queue.put(data)
        print(f'produced {type(arr)} {arr.shape} {arr.dtype}; meta: {i}; hash: {hash(arr.tobytes())}\n', flush=True)

def consume(queue, pid):
    while True:
        data = queue.get()
        array, i = data['array'], data['i']
        print(f'consumer {pid} consumed {type(array)} {array.shape} {array.dtype}; index: {i}; hash: {hash(array.tobytes())}\n', flush=True)

queue = DejaQueue(buffer_bytes=100e6)
producer = Process(target=produce, args=(queue,))
consumers = [Process(target=consume, args=(queue, pid)) for pid in range(3)]
for c in consumers:
    c.start()
producer.start()

dejaq.Parallel

The following examples show how to use dejaq.Parallel to parallelize a function or a class, and how to create job pipelines.

Here we execute a function and map iterable inputs across 10 workers. To enable pipelining, the results of each stage are provided as iterable generator. Use the .compute() method to get the final result (note that each stage pre-fetches results from n_workers calls, so some of the execution already starts before .compute). Results are always ordered.

from time import sleep
from dejaq import Parallel

def slow_function(arg):
    sleep(1.0)
    return arg + 5

input_iterable = range(100)
slow_function = Parallel(n_workers=10)(slow_function)
stage = slow_function(input_iterable)
result = stage.compute() # or list(stage)
# or shorter: 
result = Parallel(n_workers=10)(slow_function)(input_iterable).compute()

You can also use Parallel as a function decorator:

@Parallel(n_workers=10)
def slow_function_decorated(arg):
    sleep(1.0)
    return arg + 5

result = slow_function_decorated(input_iterable).compute()

Similarly, you can decorate a class. It will be instantiated within a worker. Iterable items will be fed to the __call__ method. Note how the additional init arguments are provided:

@Parallel(n_workers=1)
class Reader:
    def __init__(self, arg1):
        self.arg1 = arg1
    def __call__(self, item):
        return item + self.arg1

result = Reader(arg1=0.5)(input_iterable).compute()

Finally, you can create pipelines of chained jobs. In this example, we have a single threaded reader and consumer, but a parallel processing stage (an example use case is sequentially reading a file, compressing chunks in parallel and then sequentially writing to an output file):

@Parallel(n_workers=1)
class Producer:
    def __init__(self, arg1):
        self.arg1 = arg1
    def __call__(self, item):
        return item + self.arg1

@Parallel(n_workers=10)
class Processor:
    def __init__(self, arg1):
        self.arg1 = arg1
    def __call__(self, arg):
        sleep(1.0) #simulating a slow function
        return arg * self.arg1

@Parallel(n_workers=1)
class Consumer:
    def __init__(self, arg1):
        self.arg1 = arg1
    def __call__(self, arg):
        return arg - self.arg1

input_iterable = range(100)
stage1 = Producer(0.5)(input_iterable)
stage2 = Processor(10.0)(stage1)
stage3 = Consumer(1000)(stage2)
result = stage3.compute()

# or:
result = Consumer(1000)(Processor(10.0)(Producer(0.5)(input_iterable))).compute()

See also