-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathusing_gpc.html
433 lines (400 loc) · 119 KB
/
using_gpc.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Using the gpc package</title>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css" data-origin="pandoc">
a.sourceLine { display: inline-block; line-height: 1.25; }
a.sourceLine { pointer-events: none; color: inherit; text-decoration: inherit; }
a.sourceLine:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode { white-space: pre; position: relative; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
code.sourceCode { white-space: pre-wrap; }
a.sourceLine { text-indent: -1em; padding-left: 1em; }
}
pre.numberSource a.sourceLine
{ position: relative; left: -4em; }
pre.numberSource a.sourceLine::before
{ content: attr(data-line-number);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; pointer-events: all; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
a.sourceLine::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
var sheets = document.styleSheets;
for (var i = 0; i < sheets.length; i++) {
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
for (var j = 0; j < rules.length; j++) {
var rule = rules[j];
// check if there is a div.sourceCode rule
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") continue;
var style = rule.style.cssText;
// check if color or background-color is set
if (rule.style.color === '' && rule.style.backgroundColor === '') continue;
// replace div.sourceCode by a pre.sourceCode rule
sheets[i].deleteRule(j);
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
}
}
})();
</script>
<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#header {
text-align: center;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap;
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }
code > span.kw { color: #555; font-weight: bold; }
code > span.dt { color: #902000; }
code > span.dv { color: #40a070; }
code > span.bn { color: #d14; }
code > span.fl { color: #d14; }
code > span.ch { color: #d14; }
code > span.st { color: #d14; }
code > span.co { color: #888888; font-style: italic; }
code > span.ot { color: #007020; }
code > span.al { color: #ff0000; font-weight: bold; }
code > span.fu { color: #900; font-weight: bold; } code > span.er { color: #a61717; background-color: #e3d2d2; }
</style>
</head>
<body>
<h1 class="title toc-ignore">Using the gpc package</h1>
<div id="introduction" class="section level2">
<h2>Introduction</h2>
<p>This package is presented as an accompaniment for the group project report for the COMPASS CDT, entitled <em>Pseudo-Marginal Inference for Gaussian Process Classification with Large Datasets</em>.</p>
<p>This package provides functionality to</p>
<ul>
<li>Choose an optimal subset of data that maximises the potential entropy score for a dataset, using the Information Vector Machine (IVM) algorithm (<code>ivm_subset_selection</code>)</li>
<li>Fit a Gaussian process classification model (<code>gpc</code>)</li>
<li>Plot, print and predict from this Gaussian process classification model ( <code>plot.gpc</code>, <code>print.gpc</code> and <code>predict.gpc</code>)</li>
</ul>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb1-1" data-line-number="1"><span class="kw">library</span>(gpc)</a>
<a class="sourceLine" id="cb1-2" data-line-number="2"><span class="co">#> Loading required package: mvtnorm</span></a></code></pre></div>
</div>
<div id="usage-on-the-spam-dataset" class="section level2">
<h2>Usage on the Spam Dataset</h2>
<p>In the report, we show that this classification model provides a more accurate classification of the binary problem encountered in the e-mail spam dataset. The problem is as follows: Given a large dataset of emails, with their corresponding word and character frequencies for different cases, can we accurately predict whether a particular e-mail is spam or not spam?</p>
<div id="loading-the-data-and-taking-a-subset" class="section level3">
<h3>Loading the Data and Taking a Subset</h3>
<p>We have provided access to the spam dataset as part of the package, which can be run with</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb2-1" data-line-number="1"><span class="kw">data</span>(spam)</a></code></pre></div>
<p>And format out the response and the predictor variables, as well as divide into testing and training datasets.</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb3-1" data-line-number="1">cut =<span class="st"> </span><span class="kw">round</span>(<span class="fl">0.6</span><span class="op">*</span><span class="kw">nrow</span>(spam))</a>
<a class="sourceLine" id="cb3-2" data-line-number="2">train_ind =<span class="st"> </span><span class="kw">sample</span>(<span class="dv">1</span><span class="op">:</span><span class="kw">nrow</span>(spam), cut)</a>
<a class="sourceLine" id="cb3-3" data-line-number="3">test_ind =<span class="st"> </span>(<span class="dv">1</span><span class="op">:</span><span class="kw">nrow</span>(spam))[<span class="op">-</span>train_ind]</a>
<a class="sourceLine" id="cb3-4" data-line-number="4">y =<span class="st"> </span>spam[train_ind, <span class="dv">1</span>]</a>
<a class="sourceLine" id="cb3-5" data-line-number="5">X =<span class="st"> </span>spam[train_ind, <span class="dv">2</span><span class="op">:</span><span class="kw">ncol</span>(spam)]</a>
<a class="sourceLine" id="cb3-6" data-line-number="6">yp =<span class="st"> </span>spam[test_ind, <span class="dv">1</span>]</a>
<a class="sourceLine" id="cb3-7" data-line-number="7">Xp =<span class="st"> </span>spam[test_ind, <span class="dv">2</span><span class="op">:</span><span class="kw">ncol</span>(spam)]</a></code></pre></div>
<p>The problematic part of fitting to this data immediately is its size:</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb4-1" data-line-number="1"><span class="kw">nrow</span>(X)</a>
<a class="sourceLine" id="cb4-2" data-line-number="2"><span class="co">#> [1] 2761</span></a></code></pre></div>
<p>Since we are using MCMC methods with a pseudo marginal approach, fitting to this data for a sufficient amount of iterations will be incredibly time consuming. We instead choose a subset which maximises the entropy score for a given subset size. We use the <code>ivm_subset_selection</code> function implemented here, and choose a subset size <span class="math inline">\(d=150\)</span>. We also need to specify the covariance function (or kernel) <span class="math inline">\(k\)</span>, as well as the initial values of the hyperparameter vector <span class="math inline">\(\boldsymbol{\theta}\)</span>, since these are used in the subset selection.</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb5-1" data-line-number="1">kernel =<span class="st"> </span><span class="cf">function</span>(x, y, theta) theta[<span class="dv">1</span>] <span class="op">*</span><span class="st"> </span><span class="kw">exp</span>(<span class="op">-</span><span class="fl">0.5</span> <span class="op">/</span><span class="st"> </span>theta[<span class="dv">2</span>]<span class="op">^</span><span class="dv">2</span> <span class="op">*</span><span class="st"> </span><span class="kw">sum</span>((x <span class="op">-</span><span class="st"> </span>y)<span class="op">^</span><span class="dv">2</span>))</a>
<a class="sourceLine" id="cb5-2" data-line-number="2">init_theta =<span class="st"> </span><span class="kw">c</span>(<span class="dv">1</span>, <span class="dv">1</span>)</a>
<a class="sourceLine" id="cb5-3" data-line-number="3">subset =<span class="st"> </span><span class="kw">ivm_subset_selection</span>(X, kernel, init_theta, <span class="dt">nsub =</span> <span class="dv">150</span>)</a></code></pre></div>
<p>Now we can specify the model matrix <span class="math inline">\(X\)</span> and response vector <span class="math inline">\(y\)</span> that we will use for training the classification model.</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb6-1" data-line-number="1">Xd =<span class="st"> </span>X[subset,]</a>
<a class="sourceLine" id="cb6-2" data-line-number="2">yd =<span class="st"> </span>y[subset]</a></code></pre></div>
</div>
<div id="fitting-the-model" class="section level3">
<h3>Fitting the Model</h3>
<p>The function <code>gpc</code> is a wrapper that calls the <code>Rcpp</code> functions that fit the classification model, including the pseudo marginal approximate likelihood and the Laplace approximation. These Rcpp functions are also written in parallel using <code>RcppParallel</code>, improving the speed of building the gram matrix <span class="math inline">\(K\)</span>, and calculating the pseudo marginal approximation.</p>
<p>We fit the model as follows:</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb7-1" data-line-number="1">gp_fit =<span class="st"> </span><span class="kw">gpc</span>(<span class="dt">y =</span> yd, </a>
<a class="sourceLine" id="cb7-2" data-line-number="2"> <span class="dt">X =</span> Xd, </a>
<a class="sourceLine" id="cb7-3" data-line-number="3"> <span class="dt">nsteps =</span> <span class="dv">500</span>,</a>
<a class="sourceLine" id="cb7-4" data-line-number="4"> <span class="dt">nburn =</span> <span class="dv">250</span>,</a>
<a class="sourceLine" id="cb7-5" data-line-number="5"> <span class="dt">nchains =</span> <span class="dv">2</span>,</a>
<a class="sourceLine" id="cb7-6" data-line-number="6"> <span class="dt">nimp =</span> <span class="dv">100</span>, </a>
<a class="sourceLine" id="cb7-7" data-line-number="7"> <span class="dt">init_theta =</span> <span class="kw">c</span>(<span class="dv">1</span>, <span class="dv">1</span>),</a>
<a class="sourceLine" id="cb7-8" data-line-number="8"> <span class="dt">kernel =</span> <span class="st">"gaussian"</span>,</a>
<a class="sourceLine" id="cb7-9" data-line-number="9"> <span class="dt">print_every =</span> <span class="ot">Inf</span></a>
<a class="sourceLine" id="cb7-10" data-line-number="10">)</a>
<a class="sourceLine" id="cb7-11" data-line-number="11"><span class="co">#> Fitting a GP classification model. </span></a>
<a class="sourceLine" id="cb7-12" data-line-number="12"><span class="co">#> Running with 2 chain, 500 steps. </span></a>
<a class="sourceLine" id="cb7-13" data-line-number="13"><span class="co">#> Data length n = 150, dimension p = 57.</span></a>
<a class="sourceLine" id="cb7-14" data-line-number="14"><span class="co">#> Number of hyperparameters: 2 </span></a>
<a class="sourceLine" id="cb7-15" data-line-number="15"><span class="co">#> _____________________________________ </span></a>
<a class="sourceLine" id="cb7-16" data-line-number="16"><span class="co">#> Chain 1 / 2 starting...</span></a>
<a class="sourceLine" id="cb7-17" data-line-number="17"><span class="co">#> Warning in algo_1(y, X, nsteps, nburn, nimp, init_theta, init_marginal_lik, :</span></a>
<a class="sourceLine" id="cb7-18" data-line-number="18"><span class="co">#> NAs introduced by coercion to integer range</span></a>
<a class="sourceLine" id="cb7-19" data-line-number="19"><span class="co">#> Chain 1 Running: 1/500 iterations completed. || Acceptance ratio: 0</span></a>
<a class="sourceLine" id="cb7-20" data-line-number="20"><span class="co">#> </span></a>
<a class="sourceLine" id="cb7-21" data-line-number="21"><span class="co">#> Chain completed successfully. </span></a>
<a class="sourceLine" id="cb7-22" data-line-number="22"><span class="co">#> Chain 2 / 2 starting...</span></a>
<a class="sourceLine" id="cb7-23" data-line-number="23"><span class="co">#> Warning in algo_1(y, X, nsteps, nburn, nimp, init_theta, init_marginal_lik, :</span></a>
<a class="sourceLine" id="cb7-24" data-line-number="24"><span class="co">#> NAs introduced by coercion to integer range</span></a>
<a class="sourceLine" id="cb7-25" data-line-number="25"><span class="co">#> Chain 2 Running: 1/500 iterations completed. || Acceptance ratio: 0</span></a>
<a class="sourceLine" id="cb7-26" data-line-number="26"><span class="co">#> </span></a>
<a class="sourceLine" id="cb7-27" data-line-number="27"><span class="co">#> Chain completed successfully.</span></a></code></pre></div>
<p>Most arguments are self explanatory, but for a description of all inputs to <code>gpc</code>, see <code>?gpc</code>. Note that we have only used 500 steps, and an <span class="math inline">\(Nimp\)</span> value of 200, which is lower than what is written into the report. When fitting the full model, higher values are used.</p>
<p>Now we can inspect the model using <code>plot.gpc</code>, an S3 method used for plotting <code>gpc</code> objects.</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb8-1" data-line-number="1"><span class="kw">plot</span>(gp_fit)</a></code></pre></div>
<p><img src="" /><!-- --> By default, <code>plot.gpc</code> will plot the trace and density plots of the hyperparameters and the log pseudo marginal likelihood approximation. The argument <code>f=TRUE</code> will plot a series of the same plots for the latent variables <span class="math inline">\(f\)</span>.</p>
</div>
<div id="predicting-from-the-model" class="section level3">
<h3>Predicting from the Model</h3>
<p>To obtain predictions from this fit, we can use <code>predict.gpc</code>, which averages across all values of hyperparameter vector <code>theta</code> across all samples and chains, to produce probabilities at each data point for the positive class.</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb9-1" data-line-number="1">pred_train =<span class="st"> </span><span class="kw">predict</span>(gp_fit, X)</a>
<a class="sourceLine" id="cb9-2" data-line-number="2"><span class="co">#> Warning in predict_gp(object$y, object$X, newdata, object$kernel,</span></a>
<a class="sourceLine" id="cb9-3" data-line-number="3"><span class="co">#> fit_all_chains, : NAs introduced by coercion to integer range</span></a>
<a class="sourceLine" id="cb9-4" data-line-number="4"><span class="co">#> Predicting from GP classification model. </span></a>
<a class="sourceLine" id="cb9-5" data-line-number="5"><span class="co">#> Averaging across all 500 steps, 2 chain(s). </span></a>
<a class="sourceLine" id="cb9-6" data-line-number="6"><span class="co">#> Fit Data length n = 150, dimension p = 57.</span></a>
<a class="sourceLine" id="cb9-7" data-line-number="7"><span class="co">#> New data length n = 2761, dimension p = 57.</span></a>
<a class="sourceLine" id="cb9-8" data-line-number="8"><span class="co">#> _____________________________________ </span></a>
<a class="sourceLine" id="cb9-9" data-line-number="9"><span class="co">#> </span></a>
<a class="sourceLine" id="cb9-10" data-line-number="10"><span class="co">#> Completed.</span></a></code></pre></div>
<p>Note that we fit the model to <code>Xd</code>, the subset model matrix, but predictions can be evaluated on the full training dataset. We do the same for the testing set.</p>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb10-1" data-line-number="1">pred_test =<span class="st"> </span><span class="kw">predict</span>(gp_fit, Xp)</a>
<a class="sourceLine" id="cb10-2" data-line-number="2"><span class="co">#> Warning in predict_gp(object$y, object$X, newdata, object$kernel,</span></a>
<a class="sourceLine" id="cb10-3" data-line-number="3"><span class="co">#> fit_all_chains, : NAs introduced by coercion to integer range</span></a>
<a class="sourceLine" id="cb10-4" data-line-number="4"><span class="co">#> Predicting from GP classification model. </span></a>
<a class="sourceLine" id="cb10-5" data-line-number="5"><span class="co">#> Averaging across all 500 steps, 2 chain(s). </span></a>
<a class="sourceLine" id="cb10-6" data-line-number="6"><span class="co">#> Fit Data length n = 150, dimension p = 57.</span></a>
<a class="sourceLine" id="cb10-7" data-line-number="7"><span class="co">#> New data length n = 1840, dimension p = 57.</span></a>
<a class="sourceLine" id="cb10-8" data-line-number="8"><span class="co">#> _____________________________________ </span></a>
<a class="sourceLine" id="cb10-9" data-line-number="9"><span class="co">#> </span></a>
<a class="sourceLine" id="cb10-10" data-line-number="10"><span class="co">#> Completed.</span></a></code></pre></div>
<p>From here, we can see the percentage of correct predictions in both cases (using a 0-1 loss, if the probabilities are greater than 0.5 then we predict the positive class, otherwise it is the negative class).</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb11-1" data-line-number="1">output_pred_train =<span class="st"> </span><span class="kw">ifelse</span>(pred_train <span class="op">></span><span class="st"> </span><span class="fl">0.5</span>, <span class="dv">1</span>, <span class="dv">-1</span>)</a>
<a class="sourceLine" id="cb11-2" data-line-number="2">output_pred_test =<span class="st"> </span><span class="kw">ifelse</span>(pred_test <span class="op">></span><span class="st"> </span><span class="fl">0.5</span>, <span class="dv">1</span>, <span class="dv">-1</span>)</a></code></pre></div>
<p>The percentages are given by</p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb12-1" data-line-number="1"><span class="kw">table</span>(output_pred_train <span class="op">-</span><span class="st"> </span>y <span class="op">==</span><span class="st"> </span><span class="dv">0</span>)[<span class="dv">2</span>] <span class="op">/</span><span class="st"> </span><span class="kw">length</span>(y)</a>
<a class="sourceLine" id="cb12-2" data-line-number="2"><span class="co">#> TRUE </span></a>
<a class="sourceLine" id="cb12-3" data-line-number="3"><span class="co">#> 0.7921043</span></a>
<a class="sourceLine" id="cb12-4" data-line-number="4"><span class="kw">table</span>(output_pred_test <span class="op">-</span><span class="st"> </span>yp <span class="op">==</span><span class="st"> </span><span class="dv">0</span>)[<span class="dv">2</span>] <span class="op">/</span><span class="st"> </span><span class="kw">length</span>(yp)</a>
<a class="sourceLine" id="cb12-5" data-line-number="5"><span class="co">#> TRUE </span></a>
<a class="sourceLine" id="cb12-6" data-line-number="6"><span class="co">#> 0.8108696</span></a></code></pre></div>
</div>
</div>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>