-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature_extraction.py
174 lines (132 loc) · 4.89 KB
/
feature_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
e#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Sun Nov 20 18:12:09 2016
@author: danielvillarreal
"""
import numpy as np
#import pylab as pl
#import sklearn as sk
import scipy as sp
#import glob as gl
#import cPickle as pickle
from readStoredPickle import readStoredData,saveData
#from filtering import lowpassFilter
from entropy import sample_entropy as se
import multiprocessing as mp
#import tabulate as tab
#%%
def mean(window):
return np.mean(window).astype('int32')
def skewness(window):
return sp.stats.skew(window)
def kurtosis(window):
return sp.stats.kurtosis(window)
def energy(window):
return np.sum(np.power(window,2).astype('int32')).astype('int32')
#allows floating point arithmetic
def std(window):
return np.std(window)
def rms(window):
return np.sqrt(np.mean(np.sum(np.power(window,2).astype('int32'))).astype('int32')).astype('int32')
def linelenght(window):
return np.abs(np.sum(window[1:]-window[:-1])).astype('int32')
#allows floating point arithmetic
def rhytmitcity(window):
return np.std(window)/np.mean(window)
def sampleEntropy(window):
a,b = se(window,2,0.2)
return (-np.log(a[0]/b[1]))[0]
def powerfeatures(window):
dfft = np.fft.rfft(window)
# freqs = np.fft.rfftfreq(len(window),1.0/256.0)
powspec = np.abs(np.real(dfft).astype('int32') + np.imag(dfft).astype('int32')).astype('int32')
bands = powspec[1:52]
bands = np.split(bands,[5,8,16,32])
peak = np.zeros(5,dtype='int32')
bands = np.array(map(lambda x: np.sum(x).astype('int32'),bands))
peak[np.argmax(bands)] = 1.0
# filter out the dc band
totalPow = np.sum(powspec[1:])
if(totalPow == 0.0):
result = np.zeros([1,11])
else:
result = np.concatenate(((bands,np.append(peak,totalPow)))).astype('int32')
return result.astype('int32')
def runDataset(rq,data,func,valunpack,verboseBool):
funcName = func.func_name
print funcName, 'Starting', str( mp.current_process().name)
windows,samples,chan = data.shape
result = np.zeros([windows,valunpack,chan])
# temp = np.zeros([valunpack,chan])
for i in range(windows):
if((i % 10 == 0) and verboseBool):
print 'executing',funcName,'sample:',str(i/10)
for c in range(0,chan):
result[i,:,c] = func(data[i,:,c])
rq.put({funcName:np.reshape(result,[windows,valunpack*chan])})
print func.func_name, 'Exiting'
return
if __name__ == '__main__':
eeg = readStoredData('eeg_pat22_windows.p')
data = eeg['data']
labels = eeg['labels']
#Delete eeg so we dont hold up a lot of memory
del eeg
fun = [energy,rms,linelenght,rhytmitcity,powerfeatures,mean,std]
unpack = [1,1,1,1,11,1,1]
verbose = [False,False,False,False,False,False,False]
results_queue = mp.Queue()
jobs = []
for f,u,v in zip(fun,unpack,verbose):
p = mp.Process(target=runDataset, args=(results_queue,data,f,u,v,))
jobs.append(p)
p.start()
# for p in jobs:
# p.join()
results = [results_queue.get() for j in jobs]
feats = {}
for f in results:
n = f.keys()[0]
feats[n] = (f[n])
#%%
globalMax = 2**31
featScale = {'mean':2**12-1,'energy':(2**31),'std':2049,'rms':2**12,
'linelenght':2**24,'rhytmitcity':np.sqrt(256-1).astype('int32'),
'powerfeatures':np.array([(2**20)-1, 1, (2**20)-1])}
# compute scaling factors:
for key in featScale.keys():
if(key != 'powerfeatures'):
featScale[key] = globalMax/featScale[key]
else:
for i in range(0,len(featScale[key])):
featScale[key][i] = globalMax/featScale[key][i]
#%%
#computer scaled features and vectorized
nsamples = data.shape[0]
validFeats = []
order=[]
# count = 0
for key,value in feats.iteritems():
order.append(key)
if(key != 'powerfeatures'):
validFeats.append((value*featScale[key]).astype('int32'))
else:
bands = (value[:,0:15]*featScale[key][0]).astype('int32')
peak = (value[:,15:30]*featScale[key][1])
total = value[:,30:].astype('int32')*featScale[key][2]
validFeats.append(bands)
validFeats.append(peak)
validFeats.append(total)
validFeats = np.concatenate(validFeats,axis=1)
# count +=3
# else:
# scaledFeats[:,count:count+15] = value[0:5].reshape([nsamples,3*5])*maxFeature[key][0]
# count += 15
# scaledFeats[:,count:count+15] = value[5:11].reshape([nsamples,3*5])*maxFeature[key][1]
# count+=15
# scaledFeats[:,count:count+3] = value[11].reshape([nsamples,3])*maxFeature[key][-1]
# count+=3
# jobs = []
# manager = mp.Manager()
# return_dict = manager.dict()