-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
61 lines (48 loc) · 2.26 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import xgboost
from get_data import extract_training_data, extract_prediction_data, get_data
from build_features import create_features
import requests
import sys
FEATURES = ['win_amount_ratio', 'reputation_score', 'confidence']
def create_trained_model(data=None):
if data is None:
data = get_data()
training_data = extract_training_data(data, verbose=False)
training_set = create_features(training_data, training_data)
xgb_model = xgboost.XGBClassifier(objective="binary:logistic", random_state=6, eval_metric='aucpr')
X = training_set[FEATURES]
y = training_set['winningOutcome']
xgb_model.fit(X, y)
return xgb_model
def predict_current_proposals(trained_model, data=None):
if data is None:
data = get_data()
training_data = extract_training_data(data, verbose=False)
x = create_features(training_data, extract_prediction_data(data, verbose=False))
x['prediction'] = [prediction[0] for prediction in trained_model.predict_proba(x[FEATURES])]
return x
def transmit_text(text, webhook_url):
print(f"Transmitting: '{text}'")
transmit = requests.post(webhook_url, json={"text": text})
print(transmit.status_code, transmit.reason)
def transmit_predictions(webhook_url):
data = get_data()
print("Creating trained model...")
model = create_trained_model(data)
print("predicting on current proposals..")
predictions = predict_current_proposals(model, data)
predictions['prediction'] = round(predictions['prediction'], 2)
preboosted = predictions[predictions.stage == 'PreBoosted']
queued = predictions[predictions.stage == 'Queued']
preboosted.apply(lambda row:
transmit_text(f"Proposal PreBoosted at {row.preBoostedAt} "
f"titled '{row.title}' has a {row.prediction} chance of passing.",
webhook_url), axis=1)
queued.apply(lambda row:
transmit_text(f"~~EXPERIMENTAL~~ Queued proposal created at {row.createdAt} "
f"titled '{row.title}' currently has a {row.prediction} chance of passing.",
webhook_url), axis=1)
def main(argv):
transmit_predictions(argv)
if __name__ == "__main__":
main(sys.argv[1])