-
Notifications
You must be signed in to change notification settings - Fork 13
/
main.py
233 lines (199 loc) · 10.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os.path
import tensorflow as tf
import helper
import warnings
from distutils.version import LooseVersion
import project_tests as tests
# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer. You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))
# Check for a GPU
if not tf.test.gpu_device_name():
warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
def load_vgg(sess, vgg_path):
"""
Load Pretrained VGG Model into TensorFlow.
:param sess: TensorFlow Session
:param vgg_path: Path to vgg folder, containing "variables/" and "saved_model.pb"
:return: Tuple of Tensors from VGG model (image_input, keep_prob, layer3_out, layer4_out, layer7_out)
"""
# TODO: Implement function
# Use tf.saved_model.loader.load to load the model and weights
vgg_tag = 'vgg16'
vgg_input_tensor_name = 'image_input:0'
vgg_keep_prob_tensor_name = 'keep_prob:0'
vgg_layer3_out_tensor_name = 'layer3_out:0'
vgg_layer4_out_tensor_name = 'layer4_out:0'
vgg_layer7_out_tensor_name = 'layer7_out:0'
tf.saved_model.loader.load(sess, [vgg_tag], vgg_path)
graph = tf.get_default_graph()
input_layer = graph.get_tensor_by_name(vgg_input_tensor_name)
keep_prob = graph.get_tensor_by_name(vgg_keep_prob_tensor_name)
layer3 = graph.get_tensor_by_name(vgg_layer3_out_tensor_name)
layer4 = graph.get_tensor_by_name(vgg_layer4_out_tensor_name)
layer7 = graph.get_tensor_by_name(vgg_layer7_out_tensor_name)
return input_layer, keep_prob, layer3, layer4, layer7
tests.test_load_vgg(load_vgg, tf)
def layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes):
"""
Create the layers for a fully convolutional network. Build skip-layers using the vgg layers.
:param vgg_layer7_out: TF Tensor for VGG Layer 3 output
:param vgg_layer4_out: TF Tensor for VGG Layer 4 output
:param vgg_layer3_out: TF Tensor for VGG Layer 7 output
:param num_classes: Number of classes to classify
:return: The Tensor for the last layer of output
"""
weights_initializer_stddev = 0.01
weights_regularized_l2 = 1e-3
# TODO: Implement function
# Convolutional 1x1 to mantain space information.
conv_1x1_of_7 = tf.layers.conv2d(vgg_layer7_out,
num_classes,
1, # kernel_size
padding = 'same',
kernel_initializer = tf.random_normal_initializer(stddev=weights_initializer_stddev),
kernel_regularizer= tf.contrib.layers.l2_regularizer(weights_regularized_l2),
name='conv_1x1_of_7')
# Upsample deconvolution x 2
first_upsamplex2 = tf.layers.conv2d_transpose(conv_1x1_of_7,
num_classes,
4, # kernel_size
strides= (2, 2),
padding= 'same',
kernel_initializer = tf.random_normal_initializer(stddev=weights_initializer_stddev),
kernel_regularizer= tf.contrib.layers.l2_regularizer(weights_regularized_l2),
name='first_upsamplex2')
conv_1x1_of_4 = tf.layers.conv2d(vgg_layer4_out,
num_classes,
1, # kernel_size
padding = 'same',
kernel_initializer = tf.random_normal_initializer(stddev=weights_initializer_stddev),
kernel_regularizer= tf.contrib.layers.l2_regularizer(weights_regularized_l2),
name='conv_1x1_of_4')
# Adding skip layer.
first_skip = tf.add(first_upsamplex2, conv_1x1_of_4, name='first_skip')
# Upsample deconvolutions x 2.
second_upsamplex2 = tf.layers.conv2d_transpose(first_skip,
num_classes,
4, # kernel_size
strides= (2, 2),
padding= 'same',
kernel_initializer = tf.random_normal_initializer(stddev=weights_initializer_stddev),
kernel_regularizer= tf.contrib.layers.l2_regularizer(weights_regularized_l2),
name='second_upsamplex2')
conv_1x1_of_3 = tf.layers.conv2d(vgg_layer3_out,
num_classes,
1, # kernel_size
padding = 'same',
kernel_initializer = tf.random_normal_initializer(stddev=weights_initializer_stddev),
kernel_regularizer= tf.contrib.layers.l2_regularizer(weights_regularized_l2),
name='conv_1x1_of_3')
# Adding skip layer.
second_skip = tf.add(second_upsamplex2, conv_1x1_of_3, name='second_skip')
# Upsample deconvolution x 8.
third_upsamplex8 = tf.layers.conv2d_transpose(second_skip, num_classes, 16,
strides= (8, 8),
padding= 'same',
kernel_initializer = tf.random_normal_initializer(stddev=weights_initializer_stddev),
kernel_regularizer= tf.contrib.layers.l2_regularizer(weights_regularized_l2),
name='third_upsamplex8')
return third_upsamplex8
tests.test_layers(layers)
def optimize(nn_last_layer, correct_label, learning_rate, num_classes):
"""
Build the TensorFLow loss and optimizer operations.
:param nn_last_layer: TF Tensor of the last layer in the neural network
:param correct_label: TF Placeholder for the correct label image
:param learning_rate: TF Placeholder for the learning rate
:param num_classes: Number of classes to classify
:return: Tuple of (logits, train_op, cross_entropy_loss)
"""
# TODO: Implement function
# create logits : 2D tensor where each row represents a pixel and each column a class.
logits = tf.reshape(nn_last_layer, (-1, num_classes))
correct_label = tf.reshape(correct_label, (-1,num_classes))
# create loss function.
cross_entropy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits= logits, labels= correct_label))
# Define optimizer. Adam in this case to have variable learning rate.
optimizer = tf.train.AdamOptimizer(learning_rate= learning_rate)
# Apply optimizer to the loss function.
train_op = optimizer.minimize(cross_entropy_loss)
return logits, train_op, cross_entropy_loss
tests.test_optimize(optimize)
def train_nn(sess, epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss, input_image,
correct_label, keep_prob, learning_rate):
"""
Train neural network and print out the loss during training.
:param sess: TF Session
:param epochs: Number of epochs
:param batch_size: Batch size
:param get_batches_fn: Function to get batches of training data. Call using get_batches_fn(batch_size)
:param train_op: TF Operation to train the neural network
:param cross_entropy_loss: TF Tensor for the amount of loss
:param input_image: TF Placeholder for input images
:param correct_label: TF Placeholder for label images
:param keep_prob: TF Placeholder for dropout keep probability
:param learning_rate: TF Placeholder for learning rate
"""
# TODO: Implement function
sess.run(tf.global_variables_initializer())
print('Starting training... for {} epochs'.format(epochs))
print()
for epoch in range(epochs):
print('Epoch : {}'.format(epoch + 1))
loss_log = []
for image, label in get_batches_fn(batch_size):
_, loss = sess.run([train_op, cross_entropy_loss],
feed_dict={
input_image: image,
correct_label: label,
keep_prob: 0.5,
learning_rate: 0.00001
})
loss_log.append('{:3f}'.format(loss))
print(loss_log)
print()
print('Training finished')
tests.test_train_nn(train_nn)
def run():
num_classes = 2
image_shape = (160, 576)
data_dir = './data'
runs_dir = './runs'
model_dir = './models'
tests.test_for_kitti_dataset(data_dir)
# Download pretrained vgg model
helper.maybe_download_pretrained_vgg(data_dir)
# OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
# You'll need a GPU with at least 10 teraFLOPS to train on.
# https://www.cityscapes-dataset.com/
with tf.Session() as sess:
# Path to vgg model
vgg_path = os.path.join(data_dir, 'vgg')
# Create function to get batches
get_batches_fn = helper.gen_batch_function(os.path.join(data_dir, 'data_road/training'), image_shape)
# OPTIONAL: Augment Images for better results
# https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network
# TODO: Build NN using load_vgg, layers, and optimize function
# Placeholders
correct_label = tf.placeholder(tf.int32, [None, None, None, num_classes], name='correct_label')
learning_rate = tf.placeholder(tf.float32, name='learning_rate')
# Getting layers from vgg.
input_image, keep_prob, layer3_out, layer4_out, layer7_out = load_vgg(sess, vgg_path)
# Creating new layers.
layer_output = layers(layer3_out, layer4_out, layer7_out, num_classes)
# Creating loss and optimizer operations.
logits, train_op, cross_entropy_loss = optimize(layer_output, correct_label, learning_rate, num_classes)
# TODO: Train NN using the train_nn function
epochs = 48 # 6 12 24
batch_size = 5
saver = tf.train.Saver()
train_nn(sess, epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss, input_image,
correct_label, keep_prob, learning_rate)
# TODO: Save inference data using helper.save_inference_samples
helper.save_inference_samples(model_dir, runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image, saver)
# OPTIONAL: Apply the trained model to a video
if __name__ == '__main__':
run()