-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathRwmhPS.hs
115 lines (99 loc) · 2.92 KB
/
RwmhPS.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
{-# LANGUAGE ConstraintKinds, DataKinds, FlexibleContexts, GADTs,
OverloadedStrings, PatternSynonyms, QuasiQuotes,
ScopedTypeVariables, TemplateHaskell, TypeOperators, TypeApplications,
ViewPatterns #-}
-- RWMH with pure random numbers, using splitting, a la JAX and DEX
module RwmhPS where
import Rwmh
import GHC.Prim
import Control.Monad
import qualified Data.Foldable as F
import Lens.Micro.Extras
import Numeric.LinearAlgebra
--import Statistics.Distribution
import Statistics.Distribution.Normal
--import Statistics.Distribution.Uniform
import System.Random
--import System.Random.Stateful
--import System.Random.MWC
import qualified Data.Vector.Fusion.Stream.Monadic as MS
import qualified Data.Stream as DS
unif :: (RandomGen g) => g -> Double
unif g = fst $ uniformR (0.0, 1.0) g
stdNorm :: (RandomGen g) => g -> Double
stdNorm g = let
(g1, g2) = split g
u1 = unif g1
u2 = unif g2
th = u1*2*pi
r2 = -2*(log u2)
in (sqrt r2)*(sin th)
stdNorms :: (RandomGen g) => Int -> g -> [Double]
stdNorms n g = if (n == 0)
then []
else let
(g1, g2) = split g
z = stdNorm g1
zs = stdNorms (n-1) g2
in z : zs
-- Proposal (pure version)
rpropP :: (RandomGen g) => Vector Double -> g -> Vector Double
rpropP beta g = let
p = size pre
zl = stdNorms p g
z = fromList zl
in beta + 0.02 * pre * z
-- Metropolis kernel (pure version)
mKernelP :: (RandomGen g) => (s -> Double) -> (s -> g -> s) -> g -> (s, Double) -> (s, Double)
mKernelP logPost rprop g (x0, ll0) = let
(g1, g2) = split g
x = rprop x0 g1
ll = logPost(x)
a = ll - ll0
u = unif g2
next = if ((log u) < a)
then (x, ll)
else (x0, ll0)
in next
-- MCMC Stream (pure version)
mcmcP :: (RandomGen g) =>
s -> (g -> s -> s) -> g -> DS.Stream s
mcmcP x0 kern g = DS.unfold stepUf (x0, g)
where
stepUf xg = let
(x1, g1) = xg
x2 = kern g1 x1
(g2, _) = split g1
in (x2, (x2, g2))
-- thin a Stream
thin :: Int -> DS.Stream s -> DS.Stream s
thin t xs = let
xn = DS.drop t xs
in DS.Cons (DS.head xn) (thin t xn)
-- main entry point to this program
rwmhPS :: IO ()
rwmhPS = do
putStrLn "RWMH in Haskell (pure version, using splitting)"
let its = 10000 -- required number of iterations (post thinning and burn-in)
let burn = 1000 -- NB. This is burn-in BEFORE thinning
let th = 1000 -- thinning interval
-- read and process data
dat <- loadData
let yl = (\x -> if x then 1.0 else 0.0) <$> F.toList (view yy <$> dat)
let xl = rec2l <$> F.toList dat
let y = vector yl
print y
let x = fromLists xl
disp 2 x
-- Do MCMC...
let b0 = fromList [-9.0, 0, 0, 0, 0, 0, 0, 0]
gen <- initStdGen
let kern = mKernelP (lpost x y) rpropP
putStrLn "Running pure splitting RWMH now..."
let ds = mcmcP (b0, -1e50) kern gen
let out = DS.take its $ thin th $ DS.drop burn ds
let mat = fromLists (toList <$> (fst <$> out))
saveMatrix "rwmhPS.mat" "%g" mat
putStrLn "MCMC finished."
putStrLn "All done."
-- eof