Skip to content

Commit 031987d

Browse files
authored
Add complex number support to matmul (#557)
1 parent 5a68453 commit 031987d

File tree

2 files changed

+12
-4
lines changed

2 files changed

+12
-4
lines changed

spec/API_specification/array_api/array_object.py

+6-2
Original file line numberDiff line numberDiff line change
@@ -682,9 +682,13 @@ def __matmul__(self: array, other: array, /) -> array:
682682
Parameters
683683
----------
684684
self: array
685-
array instance. Should have a real-valued data type. Must have at least one dimension. If ``self`` is one-dimensional having shape ``(M,)`` and ``other`` has more than one dimension, ``self`` must be promoted to a two-dimensional array by prepending ``1`` to its dimensions (i.e., must have shape ``(1, M)``). After matrix multiplication, the prepended dimensions in the returned array must be removed. If ``self`` has more than one dimension (including after vector-to-matrix promotion), ``shape(self)[:-2]`` must be compatible with ``shape(other)[:-2]`` (after vector-to-matrix promotion) (see :ref:`broadcasting`). If ``self`` has shape ``(..., M, K)``, the innermost two dimensions form matrices on which to perform matrix multiplication.
685+
array instance. Should have a numeric data type. Must have at least one dimension. If ``self`` is one-dimensional having shape ``(M,)`` and ``other`` has more than one dimension, ``self`` must be promoted to a two-dimensional array by prepending ``1`` to its dimensions (i.e., must have shape ``(1, M)``). After matrix multiplication, the prepended dimensions in the returned array must be removed. If ``self`` has more than one dimension (including after vector-to-matrix promotion), ``shape(self)[:-2]`` must be compatible with ``shape(other)[:-2]`` (after vector-to-matrix promotion) (see :ref:`broadcasting`). If ``self`` has shape ``(..., M, K)``, the innermost two dimensions form matrices on which to perform matrix multiplication.
686686
other: array
687-
other array. Should have a real-valued data type. Must have at least one dimension. If ``other`` is one-dimensional having shape ``(N,)`` and ``self`` has more than one dimension, ``other`` must be promoted to a two-dimensional array by appending ``1`` to its dimensions (i.e., must have shape ``(N, 1)``). After matrix multiplication, the appended dimensions in the returned array must be removed. If ``other`` has more than one dimension (including after vector-to-matrix promotion), ``shape(other)[:-2]`` must be compatible with ``shape(self)[:-2]`` (after vector-to-matrix promotion) (see :ref:`broadcasting`). If ``other`` has shape ``(..., K, N)``, the innermost two dimensions form matrices on which to perform matrix multiplication.
687+
other array. Should have a numeric data type. Must have at least one dimension. If ``other`` is one-dimensional having shape ``(N,)`` and ``self`` has more than one dimension, ``other`` must be promoted to a two-dimensional array by appending ``1`` to its dimensions (i.e., must have shape ``(N, 1)``). After matrix multiplication, the appended dimensions in the returned array must be removed. If ``other`` has more than one dimension (including after vector-to-matrix promotion), ``shape(other)[:-2]`` must be compatible with ``shape(self)[:-2]`` (after vector-to-matrix promotion) (see :ref:`broadcasting`). If ``other`` has shape ``(..., K, N)``, the innermost two dimensions form matrices on which to perform matrix multiplication.
688+
689+
690+
.. note::
691+
If either ``x1`` or ``x2`` has a complex floating-point data type, neither argument must be complex-conjugated or transposed. If conjugation and/or transposition is desired, these operations should be explicitly performed prior to computing the matrix product.
688692
689693
Returns
690694
-------

spec/API_specification/array_api/linear_algebra_functions.py

+6-2
Original file line numberDiff line numberDiff line change
@@ -10,9 +10,13 @@ def matmul(x1: array, x2: array, /) -> array:
1010
Parameters
1111
----------
1212
x1: array
13-
first input array. Should have a real-valued data type. Must have at least one dimension. If ``x1`` is one-dimensional having shape ``(M,)`` and ``x2`` has more than one dimension, ``x1`` must be promoted to a two-dimensional array by prepending ``1`` to its dimensions (i.e., must have shape ``(1, M)``). After matrix multiplication, the prepended dimensions in the returned array must be removed. If ``x1`` has more than one dimension (including after vector-to-matrix promotion), ``shape(x1)[:-2]`` must be compatible with ``shape(x2)[:-2]`` (after vector-to-matrix promotion) (see :ref:`broadcasting`). If ``x1`` has shape ``(..., M, K)``, the innermost two dimensions form matrices on which to perform matrix multiplication.
13+
first input array. Should have a numeric data type. Must have at least one dimension. If ``x1`` is one-dimensional having shape ``(M,)`` and ``x2`` has more than one dimension, ``x1`` must be promoted to a two-dimensional array by prepending ``1`` to its dimensions (i.e., must have shape ``(1, M)``). After matrix multiplication, the prepended dimensions in the returned array must be removed. If ``x1`` has more than one dimension (including after vector-to-matrix promotion), ``shape(x1)[:-2]`` must be compatible with ``shape(x2)[:-2]`` (after vector-to-matrix promotion) (see :ref:`broadcasting`). If ``x1`` has shape ``(..., M, K)``, the innermost two dimensions form matrices on which to perform matrix multiplication.
1414
x2: array
15-
second input array. Should have a real-valued data type. Must have at least one dimension. If ``x2`` is one-dimensional having shape ``(N,)`` and ``x1`` has more than one dimension, ``x2`` must be promoted to a two-dimensional array by appending ``1`` to its dimensions (i.e., must have shape ``(N, 1)``). After matrix multiplication, the appended dimensions in the returned array must be removed. If ``x2`` has more than one dimension (including after vector-to-matrix promotion), ``shape(x2)[:-2]`` must be compatible with ``shape(x1)[:-2]`` (after vector-to-matrix promotion) (see :ref:`broadcasting`). If ``x2`` has shape ``(..., K, N)``, the innermost two dimensions form matrices on which to perform matrix multiplication.
15+
second input array. Should have a numeric data type. Must have at least one dimension. If ``x2`` is one-dimensional having shape ``(N,)`` and ``x1`` has more than one dimension, ``x2`` must be promoted to a two-dimensional array by appending ``1`` to its dimensions (i.e., must have shape ``(N, 1)``). After matrix multiplication, the appended dimensions in the returned array must be removed. If ``x2`` has more than one dimension (including after vector-to-matrix promotion), ``shape(x2)[:-2]`` must be compatible with ``shape(x1)[:-2]`` (after vector-to-matrix promotion) (see :ref:`broadcasting`). If ``x2`` has shape ``(..., K, N)``, the innermost two dimensions form matrices on which to perform matrix multiplication.
16+
17+
18+
.. note::
19+
If either ``x1`` or ``x2`` has a complex floating-point data type, neither argument must be complex-conjugated or transposed. If conjugation and/or transposition is desired, these operations should be explicitly performed prior to computing the matrix product.
1620
1721
Returns
1822
-------

0 commit comments

Comments
 (0)