forked from answerquest/pmgsy_osm_comparison
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dbconnect.py
199 lines (165 loc) · 7.14 KB
/
dbconnect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# dbonnect.py
import psycopg2, json, sys, os, time, datetime
from psycopg2 import pool, IntegrityError, extras
import pandas as pd
from pandas.io.sql import DatabaseError
import commonfuncs as cf
# Postgresql multi-threaded connection pool.
# From https://pynative.com/psycopg2-python-postgresql-connection-pooling/#h-create-a-threaded-postgresql-connection-pool-in-python
dbcreds = {
'host': os.environ.get('DB_SERVER',''),
'port': os.environ.get('DB_PORT',''),
'dbname': os.environ.get('DB_DBNAME',''),
'user': os.environ.get('DB_USER',''),
'password': os.environ.get('DB_PW','')
}
assert len(dbcreds['password']) > 2, "Invalid DB connection password"
threaded_postgreSQL_pool = psycopg2.pool.ThreadedConnectionPool(5, 20, user=dbcreds['user'],
password=dbcreds['password'], host=dbcreds['host'], port=dbcreds['port'], database=dbcreds['dbname'])
assert threaded_postgreSQL_pool, "Could not create DB connection"
cf.logmessage("DB Connected")
def makeQuery(s1, output='df', lowerCaseColumns=False, keepCols=False, fillna=True, engine=None, noprint=False):
'''
output choices:
oneValue : ex: select count(*) from table1 (output will be only one value)
oneRow : ex: select * from table1 where id='A' (output will be onle one row)
df: ex: select * from users (output will be a table)
list: json array, like df.to_dict(orient='records')
column: first column in output as a list. ex: select username from users
oneJson: First row, as dict
'''
if not isinstance(s1,str):
cf.logmessage("query needs to be a string")
return False
if ';' in s1:
cf.logmessage("; not allowed")
return False
if not noprint:
# keeping auth check and some other queries out
skipPrint = ['where token=', '.STArea()', 'STGeomFromText']
if not any([(x in s1) for x in skipPrint]) :
cf.logmessage(f"Query: {' '.join(s1.split())}")
else:
cf.logmessage(f"Query: {' '.join(s1.split())[:20]}")
ps_connection = threaded_postgreSQL_pool.getconn()
result = None # default return value
if output in ('oneValue','oneRow'):
ps_cursor = ps_connection.cursor()
ps_cursor.execute(s1)
row = ps_cursor.fetchone()
if not row:
result = None
else:
if output == 'oneValue':
result = row[0]
else:
result = row
ps_cursor.close()
elif output in ('df','list','oneJson','column'):
# df
try:
if fillna:
df = pd.read_sql_query(s1, con=ps_connection, coerce_float=False).fillna('')
else:
df = pd.read_sql_query(s1, con=ps_connection, coerce_float=False)
except DatabaseError as e:
cf.logmessage("DatabaseError!")
cf.logmessage(e)
raise
# coerce_float : need to ensure mobiles aren't screwed
# make all colunm headers lowercase
if lowerCaseColumns: df.columns = [x.lower() for x in df.columns] # from https://stackoverflow.com/questions/19726029/how-can-i-make-pandas-dataframe-column-headers-all-lowercase
if output=='df':
result = df
if (not len(df)) and (not keepCols):
result = []
elif output == 'oneJson':
if not len(df):
result = {}
else:
result = df.to_dict(orient='records')[0]
elif (not len(df)):
result = []
elif output == 'column':
result = df.iloc[:,0].tolist() # .iloc[:,0] -> first column
elif output == 'list':
result = df.to_dict(orient='records')
else:
# default - df
result = df
else:
cf.logmessage('invalid output type')
threaded_postgreSQL_pool.putconn(ps_connection) # return threaded connnection back to pool
return result
def execSQL(s1, noprint=False):
if not noprint: cf.logmessage(' '.join(s1.split()))
ps_connection = threaded_postgreSQL_pool.getconn()
ps_cursor = ps_connection.cursor()
ps_cursor.execute(s1)
ps_connection.commit()
affected = ps_cursor.rowcount
ps_cursor.close()
threaded_postgreSQL_pool.putconn(ps_connection)
return affected
def getColumnsList(tablename, engine):
statement1 = f"""
SELECT COLUMN_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = N'{tablename}'
"""
# sql = db.text(statement1)
df = pd.read_sql_query(statement1,con=engine)
# return df['COLUMN_NAME'].str.lower().to_list()
return df['column_name'].to_list()
def addRow(params,tablename):
df = pd.DataFrame([params])
return addTable(df, tablename) # heck
def OLD_addTable(df, tablename, lowerCaseColumns=False):
ps_connection = threaded_postgreSQL_pool.getconn()
table_cols = getColumnsList(tablename,ps_connection)
if lowerCaseColumns:
df.columns = [x.lower() for x in df.columns] # make lowercase
sending_cols = [x for x in table_cols if x in df.columns]
discarded_cols = set(df.columns.to_list()) - set(table_cols)
if len(discarded_cols): cf.logmessage("Dropping {} cols from uploaded data as they're not in the DB: {}".format(len(discarded_cols),', '.join(discarded_cols)))
# ensure only those values go to DB table that have columns there
# cf.logmessage("Adding {} rows into {} with these columns: {}".format(len(df), tablename, sending_cols))
CHUNKSIZE = int(os.environ.get('CHUNKSIZE',1))
try:
df[sending_cols].to_sql(name=tablename, con=ps_connection, chunksize=CHUNKSIZE, if_exists='append', index=False )
threaded_postgreSQL_pool.putconn(ps_connection) # return threaded connnection back to pool
except IntegrityError as e:
cf.logmessage(e)
threaded_postgreSQL_pool.putconn(ps_connection) # return threaded connnection back to pool
return False
except:
threaded_postgreSQL_pool.putconn(ps_connection) # return threaded connnection back to pool
raise
return False
return True
def addTable(df, table):
"""
From https://naysan.ca/2020/05/09/pandas-to-postgresql-using-psycopg2-bulk-insert-performance-benchmark/
Using psycopg2.extras.execute_values() to insert the dataframe
"""
# Create a list of tupples from the dataframe values
tuples = [tuple(x) for x in df.to_numpy()]
# Comma-separated dataframe columns
cols = ','.join(list(df.columns))
# SQL query to execute
query = "INSERT INTO %s(%s) VALUES %%s" % (table, cols)
ps_connection = threaded_postgreSQL_pool.getconn()
cursor = ps_connection.cursor()
cf.logmessage(f"Adding {len(df)} rows to {table}")
try:
extras.execute_values(cursor, query, tuples)
ps_connection.commit()
except (Exception, psycopg2.DatabaseError) as error:
cf.logmessage("Error: %s" % error)
ps_connection.rollback()
cursor.close()
threaded_postgreSQL_pool.putconn(ps_connection) # return threaded connnection back to pool
return False
cursor.close()
threaded_postgreSQL_pool.putconn(ps_connection) # return threaded connnection back to pool
return True