- 标签:链表、双指针、分治、排序、归并排序
- 难度:中等
描述:给定链表的头节点 head
。
要求:按照升序排列并返回排序后的链表。
说明:
- 链表中节点的数目在范围
$[0, 5 * 10^4]$ 内。 -
$-10^5 \le Node.val \le 10^5$ 。
示例:
输入:head = [4,2,1,3]
输出:[1,2,3,4]
输入:head = [-1,5,3,4,0]
输出:[-1,0,3,4,5]
-
使用三个指针
node_i
、node_j
和tail
。其中node_i
用于控制外循环次数,循环次数为链节点个数(链表长度)。node_j
和tail
用于控制内循环次数和循环结束位置。 -
排序开始前,将
node_i
、node_j
置于头节点位置。tail
指向链表末尾,即None
。 -
比较链表中相邻两个元素
node_j.val
与node_j.next.val
的值大小,如果node_j.val > node_j.next.val
,则值相互交换。否则不发生交换。然后向右移动node_j
指针,直到node_j.next == tail
时停止。 -
一次循环之后,将
tail
移动到node_j
所在位置。相当于tail
向左移动了一位。此时tail
节点右侧为链表中最大的链节点。 -
然后移动
node_i
节点,并将node_j
置于头节点位置。然后重复第 3、4 步操作。 -
直到
node_i
节点移动到链表末尾停止,排序结束。 -
返回链表的头节点
head
。
class Solution:
def bubbleSort(self, head: ListNode):
node_i = head
tail = None
# 外层循环次数为 链表节点个数
while node_i:
node_j = head
while node_j and node_j.next != tail:
if node_j.val > node_j.next.val:
# 交换两个节点的值
node_j.val, node_j.next.val = node_j.next.val, node_j.val
node_j = node_j.next
# 尾指针向前移动 1 位,此时尾指针右侧为排好序的链表
tail = node_j
node_i = node_i.next
return head
def sortList(self, head: Optional[ListNode]) -> Optional[ListNode]:
return self.bubbleSort(head)
- 时间复杂度:$O(n^2)$。
- 空间复杂度:$O(1)$。
- 使用两个指针
node_i
、node_j
。node_i
既可以用于控制外循环次数,又可以作为当前未排序链表的第一个链节点位置。 - 使用
min_node
记录当前未排序链表中值最小的链节点。 - 每一趟排序开始时,先令
min_node = node_i
(即暂时假设链表中node_i
节点为值最小的节点,经过比较后再确定最小值节点位置)。 - 然后依次比较未排序链表中
node_j.val
与min_node.val
的值大小。如果node_j.val < min_node.val
,则更新min_node
为node_j
。 - 这一趟排序结束时,未排序链表中最小值节点为
min_node
,如果node_i != min_node
,则将node_i
与min_node
值进行交换。如果node_i == min_node
,则不用交换。 - 排序结束后,继续向右移动
node_i
,重复上述步骤,在剩余未排序链表中寻找最小的链节点,并与node_i
进行比较和交换,直到node_i == None
或者node_i.next == None
时,停止排序。 - 返回链表的头节点
head
。
class Solution:
def sectionSort(self, head: ListNode):
node_i = head
# node_i 为当前未排序链表的第一个链节点
while node_i and node_i.next:
# min_node 为未排序链表中的值最小节点
min_node = node_i
node_j = node_i.next
while node_j:
if node_j.val < min_node.val:
min_node = node_j
node_j = node_j.next
# 交换值最小节点与未排序链表中第一个节点的值
if node_i != min_node:
node_i.val, min_node.val = min_node.val, node_i.val
node_i = node_i.next
return head
def sortList(self, head: Optional[ListNode]) -> Optional[ListNode]:
return self.sectionSort(head)
- 时间复杂度:$O(n^2)$。
- 空间复杂度:$O(1)$。
-
先使用哑节点
dummy_head
构造一个指向head
的指针,使得可以从head
开始遍历。 -
维护
sorted_list
为链表的已排序部分的最后一个节点,初始时,sorted_list = head
。 -
维护
prev
为插入元素位置的前一个节点,维护cur
为待插入元素。初始时,prev = head
,cur = head.next
。 -
比较
sorted_list
和cur
的节点值。- 如果
sorted_list.val <= cur.val
,说明cur
应该插入到sorted_list
之后,则将sorted_list
后移一位。 - 如果
sorted_list.val > cur.val
,说明cur
应该插入到head
与sorted_list
之间。则使用prev
从head
开始遍历,直到找到插入cur
的位置的前一个节点位置。然后将cur
插入。
- 如果
-
令
cur = sorted_list.next
,此时cur
为下一个待插入元素。 -
重复 4、5 步骤,直到
cur
遍历结束为空。返回dummy_head
的下一个节点。
class Solution:
def insertionSort(self, head: ListNode):
if not head or not head.next:
return head
dummy_head = ListNode(-1)
dummy_head.next = head
sorted_list = head
cur = head.next
while cur:
if sorted_list.val <= cur.val:
# 将 cur 插入到 sorted_list 之后
sorted_list = sorted_list.next
else:
prev = dummy_head
while prev.next.val <= cur.val:
prev = prev.next
# 将 cur 到链表中间
sorted_list.next = cur.next
cur.next = prev.next
prev.next = cur
cur = sorted_list.next
return dummy_head.next
def sortList(self, head: Optional[ListNode]) -> Optional[ListNode]:
return self.insertionSort(head)
- 时间复杂度:$O(n^2)$。
- 空间复杂度:$O(1)$。
- 分割环节:找到链表中心链节点,从中心节点将链表断开,并递归进行分割。
- 使用快慢指针
fast = head.next
、slow = head
,让fast
每次移动2
步,slow
移动1
步,移动到链表末尾,从而找到链表中心链节点,即slow
。 - 从中心位置将链表从中心位置分为左右两个链表
left_head
和right_head
,并从中心位置将其断开,即slow.next = None
。 - 对左右两个链表分别进行递归分割,直到每个链表中只包含一个链节点。
- 使用快慢指针
- 归并环节:将递归后的链表进行两两归并,完成一遍后每个子链表长度加倍。重复进行归并操作,直到得到完整的链表。
- 使用哑节点
dummy_head
构造一个头节点,并使用cur
指向dummy_head
用于遍历。 - 比较两个链表头节点
left
和right
的值大小。将较小的头节点加入到合并后的链表中。并向后移动该链表的头节点指针。 - 然后重复上一步操作,直到两个链表中出现链表为空的情况。
- 将剩余链表插入到合并中的链表中。
- 将哑节点
dummy_dead
的下一个链节点dummy_head.next
作为合并后的头节点返回。
- 使用哑节点
class Solution:
def merge(self, left, right):
# 归并环节
dummy_head = ListNode(-1)
cur = dummy_head
while left and right:
if left.val <= right.val:
cur.next = left
left = left.next
else:
cur.next = right
right = right.next
cur = cur.next
if left:
cur.next = left
elif right:
cur.next = right
return dummy_head.next
def mergeSort(self, head: ListNode):
# 分割环节
if not head or not head.next:
return head
# 快慢指针找到中心链节点
slow, fast = head, head.next
while fast and fast.next:
slow = slow.next
fast = fast.next.next
# 断开左右链节点
left_head, right_head = head, slow.next
slow.next = None
# 归并操作
return self.merge(self.mergeSort(left_head), self.mergeSort(right_head))
def sortList(self, head: Optional[ListNode]) -> Optional[ListNode]:
return self.mergeSort(head)
- 时间复杂度:$O(n \times \log_2n)$。
- 空间复杂度:$O(1)$。
- 从链表中找到一个基准值
pivot
,这里以头节点为基准值。 - 然后通过快慢指针
node_i
、node_j
在链表中移动,使得node_i
之前的节点值都小于基准值,node_i
之后的节点值都大于基准值。从而把数组拆分为左右两个部分。 - 再对左右两个部分分别重复第二步,直到各个部分只有一个节点,则排序结束。
注意:
虽然链表快速排序算法的平均时间复杂度为
$O(n \times \log_2n)$ 。但链表快速排序算法中基准值pivot
的取值做不到数组快速排序算法中的随机选择。一旦给定序列是有序链表,时间复杂度就会退化到$O(n^2)$ 。这也是这道题目使用链表快速排序容易超时的原因。
class Solution:
def partition(self, left: ListNode, right: ListNode):
# 左闭右开,区间没有元素或者只有一个元素,直接返回第一个节点
if left == right or left.next == right:
return left
# 选择头节点为基准节点
pivot = left.val
# 使用 node_i, node_j 双指针,保证 node_i 之前的节点值都小于基准节点值,node_i 与 node_j 之间的节点值都大于等于基准节点值
node_i, node_j = left, left.next
while node_j != right:
# 发现一个小与基准值的元素
if node_j.val < pivot:
# 因为 node_i 之前节点都小于基准值,所以先将 node_i 向右移动一位(此时 node_i 节点值大于等于基准节点值)
node_i = node_i.next
# 将小于基准值的元素 node_j 与当前 node_i 换位,换位后可以保证 node_i 之前的节点都小于基准节点值
node_i.val, node_j.val = node_j.val, node_i.val
node_j = node_j.next
# 将基准节点放到正确位置上
node_i.val, left.val = left.val, node_i.val
return node_i
def quickSort(self, left: ListNode, right: ListNode):
if left == right or left.next == right:
return left
pi = self.partition(left, right)
self.quickSort(left, pi)
self.quickSort(pi.next, right)
return left
def sortList(self, head: Optional[ListNode]) -> Optional[ListNode]:
if not head or not head.next:
return head
return self.quickSort(head, None)
- 时间复杂度:$O(n \times \log_2n)$。
- 空间复杂度:$O(1)$。
- 使用
cur
指针遍历一遍链表。找出链表中最大值list_max
和最小值list_min
。 - 使用数组
counts
存储节点出现次数。 - 再次使用
cur
指针遍历一遍链表。将链表中每个值为cur.val
的节点出现次数,存入数组对应第cur.val - list_min
项中。 - 反向填充目标链表:
- 建立一个哑节点
dummy_head
,作为链表的头节点。使用cur
指针指向dummy_head
。 - 从小到大遍历一遍数组
counts
。对于每个counts[i] != 0
的元素建立一个链节点,值为i + list_min
,将其插入到cur.next
上。并向右移动cur
。同时counts[i] -= 1
。直到counts[i] == 0
后继续向后遍历数组counts
。
- 建立一个哑节点
- 将哑节点
dummy_dead
的下一个链节点dummy_head.next
作为新链表的头节点返回。
class Solution:
def countingSort(self, head: ListNode):
if not head:
return head
# 找出链表中最大值 list_max 和最小值 list_min
list_min, list_max = float('inf'), float('-inf')
cur = head
while cur:
if cur.val < list_min:
list_min = cur.val
if cur.val > list_max:
list_max = cur.val
cur = cur.next
size = list_max - list_min + 1
counts = [0 for _ in range(size)]
cur = head
while cur:
counts[cur.val - list_min] += 1
cur = cur.next
dummy_head = ListNode(-1)
cur = dummy_head
for i in range(size):
while counts[i]:
cur.next = ListNode(i + list_min)
counts[i] -= 1
cur = cur.next
return dummy_head.next
def sortList(self, head: Optional[ListNode]) -> Optional[ListNode]:
return self.countingSort(head)
-
时间复杂度:$O(n + k)$,其中
$k$ 代表待排序链表中所有元素的值域。 - 空间复杂度:$O(k)$。
- 使用
cur
指针遍历一遍链表。找出链表中最大值list_max
和最小值list_min
。 - 通过
(最大值 - 最小值) / 每个桶的大小
计算出桶的个数,即bucket_count = (list_max - list_min) // bucket_size + 1
个桶。 - 定义数组
buckets
为桶,桶的个数为bucket_count
个。 - 使用
cur
指针再次遍历一遍链表,将每个元素装入对应的桶中。 - 对每个桶内的元素单独排序,可以使用链表插入排序(超时)、链表归并排序(通过)、链表快速排序(超时)等算法。
- 最后按照顺序将桶内的元素拼成新的链表,并返回。
class ListNode:
def __init__(self, val=0, next=None):
self.val = val
self.next = next
class Solution:
# 将链表节点值 val 添加到对应桶 buckets[index] 中
def insertion(self, buckets, index, val):
if not buckets[index]:
buckets[index] = ListNode(val)
return
node = ListNode(val)
node.next = buckets[index]
buckets[index] = node
# 归并环节
def merge(self, left, right):
dummy_head = ListNode(-1)
cur = dummy_head
while left and right:
if left.val <= right.val:
cur.next = left
left = left.next
else:
cur.next = right
right = right.next
cur = cur.next
if left:
cur.next = left
elif right:
cur.next = right
return dummy_head.next
def mergeSort(self, head: ListNode):
# 分割环节
if not head or not head.next:
return head
# 快慢指针找到中心链节点
slow, fast = head, head.next
while fast and fast.next:
slow = slow.next
fast = fast.next.next
# 断开左右链节点
left_head, right_head = head, slow.next
slow.next = None
# 归并操作
return self.merge(self.mergeSort(left_head), self.mergeSort(right_head))
def bucketSort(self, head: ListNode, bucket_size=5):
if not head:
return head
# 找出链表中最大值 list_max 和最小值 list_min
list_min, list_max = float('inf'), float('-inf')
cur = head
while cur:
if cur.val < list_min:
list_min = cur.val
if cur.val > list_max:
list_max = cur.val
cur = cur.next
# 计算桶的个数,并定义桶
bucket_count = (list_max - list_min) // bucket_size + 1
buckets = [[] for _ in range(bucket_count)]
# 将链表节点值依次添加到对应桶中
cur = head
while cur:
index = (cur.val - list_min) // bucket_size
self.insertion(buckets, index, cur.val)
cur = cur.next
dummy_head = ListNode(-1)
cur = dummy_head
# 将元素依次出桶,并拼接成有序链表
for bucket_head in buckets:
bucket_cur = self.mergeSort(bucket_head)
while bucket_cur:
cur.next = bucket_cur
cur = cur.next
bucket_cur = bucket_cur.next
return dummy_head.next
def sortList(self, head: Optional[ListNode]) -> Optional[ListNode]:
return self.bucketSort(head)
- 时间复杂度:$O(n)$。
- 空间复杂度:$O(n + m)$。$m$ 为桶的个数。
- 使用
cur
指针遍历链表,获取节点值位数最长的位数size
。 - 从个位到高位遍历位数。因为
0
~9
共有10
位数字,所以建立10
个桶。 - 以每个节点对应位数上的数字为索引,将节点值放入到对应桶中。
- 建立一个哑节点
dummy_head
,作为链表的头节点。使用cur
指针指向dummy_head
。 - 将桶中元素依次取出,并根据元素值建立链表节点,并插入到新的链表后面。从而生成新的链表。
- 之后依次以十位,百位,…,直到最大值元素的最高位处值为索引,放入到对应桶中,并生成新的链表,最终完成排序。
- 将哑节点
dummy_dead
的下一个链节点dummy_head.next
作为新链表的头节点返回。
class Solution:
def radixSort(self, head: ListNode):
# 计算位数最长的位数
size = 0
cur = head
while cur:
val_len = len(str(cur.val))
if val_len > size:
size = val_len
cur = cur.next
# 从个位到高位遍历位数
for i in range(size):
buckets = [[] for _ in range(10)]
cur = head
while cur:
# 以每个节点对应位数上的数字为索引,将节点值放入到对应桶中
buckets[cur.val // (10 ** i) % 10].append(cur.val)
cur = cur.next
# 生成新的链表
dummy_head = ListNode(-1)
cur = dummy_head
for bucket in buckets:
for num in bucket:
cur.next = ListNode(num)
cur = cur.next
head = dummy_head.next
return head
def sortList(self, head: Optional[ListNode]) -> Optional[ListNode]:
return self.radixSort(head)
-
时间复杂度:$O(n \times k)$。其中
$n$ 是待排序元素的个数,$k$ 是数字位数。$k$ 的大小取决于数字位的选择(十进制位、二进制位)和待排序元素所属数据类型全集的大小。 - 空间复杂度:$O(n + k)$。