-
Notifications
You must be signed in to change notification settings - Fork 23
/
pose_estimation.py
369 lines (289 loc) · 15.2 KB
/
pose_estimation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
# !/usr/bin/env python3
# coding=utf-8
# author=dave.fang@outlook.com
# create=20171225
import cv2
import math
import torch
import torch.nn as nn
from torch import np
from torch.autograd import Variable
from utils import *
from scipy.ndimage.filters import gaussian_filter
# find connection in the specified sequence, center 29 is in the position 15
limb_seq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10],
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17],
[1, 16], [16, 18], [3, 17], [6, 18]]
# the middle joints heatmap correpondence
map_ids = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22],
[23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52],
[55, 56], [37, 38], [45, 46]]
# visualize
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0],
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255],
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
class PoseEstimation(nn.Module):
def __init__(self, model_dict):
super(PoseEstimation, self).__init__()
self.model0 = model_dict['block_0']
self.model1_1 = model_dict['block1_1']
self.model2_1 = model_dict['block2_1']
self.model3_1 = model_dict['block3_1']
self.model4_1 = model_dict['block4_1']
self.model5_1 = model_dict['block5_1']
self.model6_1 = model_dict['block6_1']
self.model1_2 = model_dict['block1_2']
self.model2_2 = model_dict['block2_2']
self.model3_2 = model_dict['block3_2']
self.model4_2 = model_dict['block4_2']
self.model5_2 = model_dict['block5_2']
self.model6_2 = model_dict['block6_2']
def forward(self, x):
out1 = self.model0(x)
out1_1 = self.model1_1(out1)
out1_2 = self.model1_2(out1)
out2 = torch.cat([out1_1, out1_2, out1], 1)
out2_1 = self.model2_1(out2)
out2_2 = self.model2_2(out2)
out3 = torch.cat([out2_1, out2_2, out1], 1)
out3_1 = self.model3_1(out3)
out3_2 = self.model3_2(out3)
out4 = torch.cat([out3_1, out3_2, out1], 1)
out4_1 = self.model4_1(out4)
out4_2 = self.model4_2(out4)
out5 = torch.cat([out4_1, out4_2, out1], 1)
out5_1 = self.model5_1(out5)
out5_2 = self.model5_2(out5)
out6 = torch.cat([out5_1, out5_2, out1], 1)
out6_1 = self.model6_1(out6)
out6_2 = self.model6_2(out6)
return out6_1, out6_2
def make_layers(layer_dict):
layers = []
for i in range(len(layer_dict) - 1):
layer = layer_dict[i]
for k in layer:
v = layer[k]
if 'pool' in k:
layers += [nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2])]
else:
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4])
layers += [conv2d, nn.ReLU(inplace=True)]
layer = list(layer_dict[-1].keys())
k = layer[0]
v = layer_dict[-1][k]
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4])
layers += [conv2d]
return nn.Sequential(*layers)
def get_pose_model():
blocks = {}
block_0 = [{'conv1_1': [3, 64, 3, 1, 1]}, {'conv1_2': [64, 64, 3, 1, 1]}, {'pool1_stage1': [2, 2, 0]},
{'conv2_1': [64, 128, 3, 1, 1]}, {'conv2_2': [128, 128, 3, 1, 1]}, {'pool2_stage1': [2, 2, 0]},
{'conv3_1': [128, 256, 3, 1, 1]}, {'conv3_2': [256, 256, 3, 1, 1]}, {'conv3_3': [256, 256, 3, 1, 1]},
{'conv3_4': [256, 256, 3, 1, 1]}, {'pool3_stage1': [2, 2, 0]}, {'conv4_1': [256, 512, 3, 1, 1]},
{'conv4_2': [512, 512, 3, 1, 1]}, {'conv4_3_CPM': [512, 256, 3, 1, 1]},
{'conv4_4_CPM': [256, 128, 3, 1, 1]}]
blocks['block1_1'] = [{'conv5_1_CPM_L1': [128, 128, 3, 1, 1]}, {'conv5_2_CPM_L1': [128, 128, 3, 1, 1]},
{'conv5_3_CPM_L1': [128, 128, 3, 1, 1]}, {'conv5_4_CPM_L1': [128, 512, 1, 1, 0]},
{'conv5_5_CPM_L1': [512, 38, 1, 1, 0]}]
blocks['block1_2'] = [{'conv5_1_CPM_L2': [128, 128, 3, 1, 1]}, {'conv5_2_CPM_L2': [128, 128, 3, 1, 1]},
{'conv5_3_CPM_L2': [128, 128, 3, 1, 1]}, {'conv5_4_CPM_L2': [128, 512, 1, 1, 0]},
{'conv5_5_CPM_L2': [512, 19, 1, 1, 0]}]
for i in range(2, 7):
blocks['block%d_1' % i] = [{'Mconv1_stage%d_L1' % i: [185, 128, 7, 1, 3]},
{'Mconv2_stage%d_L1' % i: [128, 128, 7, 1, 3]},
{'Mconv3_stage%d_L1' % i: [128, 128, 7, 1, 3]},
{'Mconv4_stage%d_L1' % i: [128, 128, 7, 1, 3]},
{'Mconv5_stage%d_L1' % i: [128, 128, 7, 1, 3]},
{'Mconv6_stage%d_L1' % i: [128, 128, 1, 1, 0]},
{'Mconv7_stage%d_L1' % i: [128, 38, 1, 1, 0]}]
blocks['block%d_2' % i] = [{'Mconv1_stage%d_L2' % i: [185, 128, 7, 1, 3]},
{'Mconv2_stage%d_L2' % i: [128, 128, 7, 1, 3]},
{'Mconv3_stage%d_L2' % i: [128, 128, 7, 1, 3]},
{'Mconv4_stage%d_L2' % i: [128, 128, 7, 1, 3]},
{'Mconv5_stage%d_L2' % i: [128, 128, 7, 1, 3]},
{'Mconv6_stage%d_L2' % i: [128, 128, 1, 1, 0]},
{'Mconv7_stage%d_L2' % i: [128, 19, 1, 1, 0]}]
layers = []
for block in block_0:
# print(block)
for key in block:
v = block[key]
if 'pool' in key:
layers += [nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2])]
else:
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4])
layers += [conv2d, nn.ReLU(inplace=True)]
models = {
'block_0': nn.Sequential(*layers)
}
for k in blocks:
v = blocks[k]
models[k] = make_layers(v)
return PoseEstimation(models)
def get_paf_and_heatmap(model, img_raw, scale_search, param_stride=8, box_size=368):
multiplier = [scale * box_size / img_raw.shape[0] for scale in scale_search]
heatmap_avg = torch.zeros((len(multiplier), 19, img_raw.shape[0], img_raw.shape[1])).cuda()
paf_avg = torch.zeros((len(multiplier), 38, img_raw.shape[0], img_raw.shape[1])).cuda()
for i, scale in enumerate(multiplier):
img_test = cv2.resize(img_raw, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
img_test_pad, pad = pad_right_down_corner(img_test, param_stride, param_stride)
img_test_pad = np.transpose(np.float32(img_test_pad[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
feed = Variable(torch.from_numpy(img_test_pad)).cuda()
output1, output2 = model(feed)
print(output1.size())
print(output2.size())
heatmap = nn.UpsamplingBilinear2d((img_raw.shape[0], img_raw.shape[1])).cuda()(output2)
paf = nn.UpsamplingBilinear2d((img_raw.shape[0], img_raw.shape[1])).cuda()(output1)
heatmap_avg[i] = heatmap[0].data
paf_avg[i] = paf[0].data
heatmap_avg = torch.transpose(torch.transpose(torch.squeeze(torch.mean(heatmap_avg, 0)), 0, 1), 1, 2).cuda()
heatmap_avg = heatmap_avg.cpu().numpy()
paf_avg = torch.transpose(torch.transpose(torch.squeeze(torch.mean(paf_avg, 0)), 0, 1), 1, 2).cuda()
paf_avg = paf_avg.cpu().numpy()
return paf_avg, heatmap_avg
def extract_heatmap_info(heatmap_avg, param_thre1=0.1):
all_peaks = []
peak_counter = 0
for part in range(18):
map_ori = heatmap_avg[:, :, part]
map_gau = gaussian_filter(map_ori, sigma=3)
map_left = np.zeros(map_gau.shape)
map_left[1:, :] = map_gau[:-1, :]
map_right = np.zeros(map_gau.shape)
map_right[:-1, :] = map_gau[1:, :]
map_up = np.zeros(map_gau.shape)
map_up[:, 1:] = map_gau[:, :-1]
map_down = np.zeros(map_gau.shape)
map_down[:, :-1] = map_gau[:, 1:]
peaks_binary = np.logical_and.reduce(
(map_gau >= map_left, map_gau >= map_right, map_gau >= map_up,
map_gau >= map_down, map_gau > param_thre1))
peaks = zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0]) # note reverse
peaks = list(peaks)
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
ids = range(peak_counter, peak_counter + len(peaks))
peaks_with_score_and_id = [peaks_with_score[i] + (ids[i],) for i in range(len(ids))]
all_peaks.append(peaks_with_score_and_id)
peak_counter += len(peaks)
return all_peaks
def extract_paf_info(img_raw, paf_avg, all_peaks, param_thre2=0.05, param_thre3=0.5):
connection_all = []
special_k = []
mid_num = 10
for k in range(len(map_ids)):
score_mid = paf_avg[:, :, [x - 19 for x in map_ids[k]]]
candA = all_peaks[limb_seq[k][0] - 1]
candB = all_peaks[limb_seq[k][1] - 1]
nA = len(candA)
nB = len(candB)
if nA != 0 and nB != 0:
connection_candidate = []
for i in range(nA):
for j in range(nB):
vec = np.subtract(candB[j][:2], candA[i][:2])
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
vec = np.divide(vec, norm)
startend = zip(np.linspace(candA[i][0], candB[j][0], num=mid_num),
np.linspace(candA[i][1], candB[j][1], num=mid_num))
startend = list(startend)
vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0]
for I in range(len(startend))])
vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1]
for I in range(len(startend))])
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
score_with_dist_prior = sum(score_midpts) / len(score_midpts)
score_with_dist_prior += min(0.5 * img_raw.shape[0] / norm - 1, 0)
criterion1 = len(np.nonzero(score_midpts > param_thre2)[0]) > 0.8 * len(score_midpts)
criterion2 = score_with_dist_prior > 0
if criterion1 and criterion2:
connection_candidate.append(
[i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]])
connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
connection = np.zeros((0, 5))
for c in range(len(connection_candidate)):
i, j, s = connection_candidate[c][0:3]
if i not in connection[:, 3] and j not in connection[:, 4]:
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
if len(connection) >= min(nA, nB):
break
connection_all.append(connection)
else:
special_k.append(k)
connection_all.append([])
return special_k, connection_all
def get_subsets(connection_all, special_k, all_peaks):
# last number in each row is the total parts number of that person
# the second last number in each row is the score of the overall configuration
subset = -1 * np.ones((0, 20))
candidate = np.array([item for sublist in all_peaks for item in sublist])
for k in range(len(map_ids)):
if k not in special_k:
partAs = connection_all[k][:, 0]
partBs = connection_all[k][:, 1]
indexA, indexB = np.array(limb_seq[k]) - 1
for i in range(len(connection_all[k])): # = 1:size(temp,1)
found = 0
subset_idx = [-1, -1]
for j in range(len(subset)): # 1:size(subset,1):
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
subset_idx[found] = j
found += 1
if found == 1:
j = subset_idx[0]
if (subset[j][indexB] != partBs[i]):
subset[j][indexB] = partBs[i]
subset[j][-1] += 1
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
elif found == 2: # if found 2 and disjoint, merge them
j1, j2 = subset_idx
print("found = 2")
membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
if len(np.nonzero(membership == 2)[0]) == 0: # merge
subset[j1][:-2] += (subset[j2][:-2] + 1)
subset[j1][-2:] += subset[j2][-2:]
subset[j1][-2] += connection_all[k][i][2]
subset = np.delete(subset, j2, 0)
else: # as like found == 1
subset[j1][indexB] = partBs[i]
subset[j1][-1] += 1
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
# if find no partA in the subset, create a new subset
elif not found and k < 17:
row = -1 * np.ones(20)
row[indexA] = partAs[i]
row[indexB] = partBs[i]
row[-1] = 2
row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
subset = np.vstack([subset, row])
return subset, candidate
def draw_key_point(subset, all_peaks, img_raw):
del_ids = []
for i in range(len(subset)):
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
del_ids.append(i)
subset = np.delete(subset, del_ids, axis=0)
img_canvas = img_raw.copy() # B,G,R order
for i in range(18):
for j in range(len(all_peaks[i])):
cv2.circle(img_canvas, all_peaks[i][j][0:2], 4, colors[i], thickness=-1)
return subset, img_canvas
def link_key_point(img_canvas, candidate, subset, stickwidth=4):
for i in range(17):
for n in range(len(subset)):
index = subset[n][np.array(limb_seq[i]) - 1]
if -1 in index:
continue
cur_canvas = img_canvas.copy()
Y = candidate[index.astype(int), 0]
X = candidate[index.astype(int), 1]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
img_canvas = cv2.addWeighted(img_canvas, 0.4, cur_canvas, 0.6, 0)
return img_canvas
if __name__ == '__main__':
print(get_pose_model())