-
Notifications
You must be signed in to change notification settings - Fork 126
/
Copy pathmodvis.py
421 lines (371 loc) · 16.8 KB
/
modvis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
#!/usr/bin/env python3
# -*- coding: utf-8; -*-
"""A simple import analyzer. Visualize dependencies between modules."""
import ast
from glob import glob
import logging
from optparse import OptionParser # TODO: migrate to argparse
import os
import pyan.node
import pyan.visgraph
import pyan.writers
# from pyan.anutils import get_module_name
def filename_to_module_name(fullpath): # we need to see __init__, hence we don't use anutils.get_module_name.
"""'some/path/module.py' -> 'some.path.module'"""
if not fullpath.endswith(".py"):
raise ValueError("Expected a .py filename, got '{}'".format(fullpath))
rel = ".{}".format(os.path.sep) # ./
if fullpath.startswith(rel):
fullpath = fullpath[len(rel) :]
fullpath = fullpath[:-3] # remove .py
return fullpath.replace(os.path.sep, ".")
def split_module_name(m):
"""'fully.qualified.name' -> ('fully.qualified', 'name')"""
k = m.rfind(".")
if k == -1:
return ("", m)
return (m[:k], m[(k + 1) :])
# blacklist = (".git", "build", "dist", "test")
# def find_py_files(basedir):
# py_files = []
# for root, dirs, files in os.walk(basedir):
# for x in blacklist: # don't visit blacklisted dirs
# if x in dirs:
# dirs.remove(x)
# for filename in files:
# if filename.endswith(".py"):
# fullpath = os.path.join(root, filename)
# py_files.append(fullpath)
# return py_files
def resolve(current_module, target_module, level):
"""Return fully qualified name of the target_module in an import.
If level == 0, the import is absolute, hence target_module is already the
fully qualified name (and will be returned as-is).
Relative imports (level > 0) are resolved using current_module as the
starting point. Usually this is good enough (especially if you analyze your
project by invoking modvis in its top-level directory).
For the exact implications, see the section "Import sibling packages" in:
https://alex.dzyoba.com/blog/python-import/
and this SO discussion:
https://stackoverflow.com/questions/14132789/relative-imports-for-the-billionth-time
"""
if level < 0:
raise ValueError("Relative import level must be >= 0, got {}".format(level))
if level == 0: # absolute import
return target_module
# level > 0 (let's have some simplistic support for relative imports)
if level > current_module.count(".") + 1: # foo.bar.baz -> max level 3, pointing to top level
raise ValueError("Relative import level {} too large for module name {}".format(level, current_module))
base = current_module
for _ in range(level):
k = base.rfind(".")
if k == -1:
base = ""
break
base = base[:k]
return ".".join((base, target_module))
class ImportVisitor(ast.NodeVisitor):
def __init__(self, filenames, logger):
self.modules = {} # modname: {dep0, dep1, ...}
self.fullpaths = {} # modname: fullpath
self.logger = logger
self.analyze(filenames)
def analyze(self, filenames):
for fullpath in filenames:
with open(fullpath, "rt", encoding="utf-8") as f:
content = f.read()
m = filename_to_module_name(fullpath)
self.current_module = m
self.fullpaths[m] = fullpath
self.visit(ast.parse(content, fullpath))
def add_dependency(self, target_module): # source module is always self.current_module
m = self.current_module
if m not in self.modules:
self.modules[m] = set()
self.modules[m].add(target_module)
# Just in case the target (or one or more of its parents) is a package
# (we don't know that), add a dependency on the relevant __init__ module.
#
# If there's no matching __init__ (either no __init__.py provided, or
# the target is just a module), this is harmless - we just generate a
# spurious dependency on a module that doesn't even exist.
#
# Since nonexistent modules are not in the analyzed set (i.e. do not
# appear as keys of self.modules), prepare_graph will ignore them.
#
# TODO: This would be a problem for a simple plain-text output that doesn't use the graph.
modpath = target_module.split(".")
for k in range(1, len(modpath) + 1):
base = ".".join(modpath[:k])
possible_init = base + ".__init__"
if possible_init != m: # will happen when current_module is somepackage.__init__ itself
self.modules[m].add(possible_init)
self.logger.debug(" added possible implicit use of '{}'".format(possible_init))
def visit_Import(self, node):
self.logger.debug(
"{}:{}: Import {}".format(self.current_module, node.lineno, [alias.name for alias in node.names])
)
for alias in node.names:
self.add_dependency(alias.name) # alias.asname not relevant for our purposes
def visit_ImportFrom(self, node):
# from foo import some_symbol
if node.module:
self.logger.debug(
"{}:{}: ImportFrom '{}', relative import level {}".format(
self.current_module, node.lineno, node.module, node.level
)
)
absname = resolve(self.current_module, node.module, node.level)
if node.level > 0:
self.logger.debug(" resolved relative import to '{}'".format(absname))
self.add_dependency(absname)
# from . import foo --> module = None; now the **names** refer to modules
else:
for alias in node.names:
self.logger.debug(
"{}:{}: ImportFrom '{}', target module '{}', relative import level {}".format(
self.current_module, node.lineno, "." * node.level, alias.name, node.level
)
)
absname = resolve(self.current_module, alias.name, node.level)
if node.level > 0:
self.logger.debug(" resolved relative import to '{}'".format(absname))
self.add_dependency(absname)
# --------------------------------------------------------------------------------
def detect_cycles(self):
"""Postprocessing. Detect import cycles.
Return format is `[(prefix, cycle), ...]` where `prefix` is the
non-cyclic prefix of the import chain, and `cycle` contains only
the cyclic part (where the first and last elements are the same).
"""
cycles = []
def walk(m, seen=None, trace=None):
trace = (trace or []) + [m]
seen = seen or set()
if m in seen:
cycles.append(trace)
return
seen = seen | {m}
deps = self.modules[m]
for d in sorted(deps):
if d in self.modules:
walk(d, seen, trace)
for root in sorted(self.modules):
walk(root)
# For each detected cycle, report the non-cyclic prefix and the cycle separately
out = []
for cycle in cycles:
offender = cycle[-1]
k = cycle.index(offender)
out.append((cycle[:k], cycle[k:]))
return out
def prepare_graph(self): # same format as in pyan.analyzer
"""Postprocessing. Prepare data for pyan.visgraph for graph file generation."""
self.nodes = {} # Node name: list of Node objects (in possibly different namespaces)
self.uses_edges = {}
# we have no defines_edges, which doesn't matter as long as we don't enable that option in visgraph.
# TODO: Right now we care only about modules whose files we read.
# TODO: If we want to include in the graph also targets that are not in the analyzed set,
# TODO: then we could create nodes also for the modules listed in the *values* of self.modules.
for m in self.modules:
ns, mod = split_module_name(m)
package = os.path.dirname(self.fullpaths[m])
# print("{}: ns={}, mod={}, fn={}".format(m, ns, mod, fn))
# HACK: The `filename` attribute of the node determines the visual color.
# HACK: We are visualizing at module level, so color by package.
# TODO: If we are analyzing files from several projects in the same run,
# TODO: it could be useful to decide the hue by the top-level directory name
# TODO: (after the './' if any), and lightness by the depth in each tree.
# TODO: This would be most similar to how Pyan does it for functions/classes.
n = pyan.node.Node(namespace=ns, name=mod, ast_node=None, filename=package, flavor=pyan.node.Flavor.MODULE)
n.defined = True
# Pyan's analyzer.py allows several nodes to share the same short name,
# which is used as the key to self.nodes; but we use the fully qualified
# name as the key. Nevertheless, visgraph expects a format where the
# values in the visitor's `nodes` attribute are lists.
self.nodes[m] = [n]
def add_uses_edge(from_node, to_node):
if from_node not in self.uses_edges:
self.uses_edges[from_node] = set()
self.uses_edges[from_node].add(to_node)
for m, deps in self.modules.items():
for d in deps:
n_from = self.nodes.get(m)
n_to = self.nodes.get(d)
if n_from and n_to:
add_uses_edge(n_from[0], n_to[0])
# sanity check output
for m, deps in self.uses_edges.items():
assert m.get_name() in self.nodes
for d in deps:
assert d.get_name() in self.nodes
def main():
usage = """usage: %prog FILENAME... [--dot|--tgf|--yed]"""
desc = "Analyse one or more Python source files and generate an approximate module dependency graph."
parser = OptionParser(usage=usage, description=desc)
parser.add_option("--dot", action="store_true", default=False, help="output in GraphViz dot format")
parser.add_option("--tgf", action="store_true", default=False, help="output in Trivial Graph Format")
parser.add_option("--yed", action="store_true", default=False, help="output in yEd GraphML Format")
parser.add_option("-f", "--file", dest="filename", help="write graph to FILE", metavar="FILE", default=None)
parser.add_option("-l", "--log", dest="logname", help="write log to LOG", metavar="LOG")
parser.add_option("-v", "--verbose", action="store_true", default=False, dest="verbose", help="verbose output")
parser.add_option(
"-V",
"--very-verbose",
action="store_true",
default=False,
dest="very_verbose",
help="even more verbose output (mainly for debug)",
)
parser.add_option(
"-c",
"--colored",
action="store_true",
default=False,
dest="colored",
help="color nodes according to namespace [dot only]",
)
parser.add_option(
"-g",
"--grouped",
action="store_true",
default=False,
dest="grouped",
help="group nodes (create subgraphs) according to namespace [dot only]",
)
parser.add_option(
"-e",
"--nested-groups",
action="store_true",
default=False,
dest="nested_groups",
help="create nested groups (subgraphs) for nested namespaces (implies -g) [dot only]",
)
parser.add_option(
"-C",
"--cycles",
action="store_true",
default=False,
dest="cycles",
help="detect import cycles and print report to stdout",
)
parser.add_option(
"--dot-rankdir",
default="TB",
dest="rankdir",
help=(
"specifies the dot graph 'rankdir' property for "
"controlling the direction of the graph. "
"Allowed values: ['TB', 'LR', 'BT', 'RL']. "
"[dot only]"
),
)
parser.add_option(
"-a", "--annotated", action="store_true", default=False, dest="annotated", help="annotate with module location"
)
options, args = parser.parse_args()
filenames = [fn2 for fn in args for fn2 in glob(fn, recursive=True)]
if len(args) == 0:
parser.error("Need one or more filenames to process")
if options.nested_groups:
options.grouped = True
graph_options = {
"draw_defines": False, # we have no defines edges
"draw_uses": True,
"colored": options.colored,
"grouped_alt": False,
"grouped": options.grouped,
"nested_groups": options.nested_groups,
"annotated": options.annotated,
}
# TODO: use an int argument for verbosity
logger = logging.getLogger(__name__)
if options.very_verbose:
logger.setLevel(logging.DEBUG)
elif options.verbose:
logger.setLevel(logging.INFO)
else:
logger.setLevel(logging.WARN)
logger.addHandler(logging.StreamHandler())
if options.logname:
handler = logging.FileHandler(options.logname)
logger.addHandler(handler)
# run the analysis
v = ImportVisitor(filenames, logger)
# Postprocessing: detect import cycles
#
# NOTE: Because this is a static analysis, it doesn't care about the order
# the code runs in any particular invocation of the software. Every
# analyzed module is considered as a possible entry point to the program,
# and all cycles (considering *all* possible branches *at any step* of
# *each* import chain) will be mapped recursively.
#
# Obviously, this easily leads to a combinatoric explosion. In a mid-size
# project (~20k SLOC), the analysis may find thousands of unique import
# cycles, most of which are harmless.
#
# Many cycles appear due to package A importing something from package B
# (possibly from one of its submodules) and vice versa, when both packages
# have an __init__ module. If they don't actually try to import any names
# that only become defined after the init has finished running, it's
# usually fine.
#
# (Init modules often import names from their submodules to the package's
# top-level namespace; those names can be reliably accessed only after the
# init module has finished running. But importing names directly from the
# submodule where they are defined is fine also during the init.)
#
# But if your program is crashing due to a cyclic import, you already know
# in any case *which* import cycle is causing it, just by looking at the
# stack trace. So this analysis is just extra information that says what
# other cycles exist, if any.
if options.cycles:
cycles = v.detect_cycles()
if not cycles:
print("No import cycles detected.")
else:
unique_cycles = set()
for prefix, cycle in cycles:
unique_cycles.add(tuple(cycle))
print("Detected the following import cycles (n_results={}).".format(len(unique_cycles)))
def stats():
lengths = [len(x) - 1 for x in unique_cycles] # number of modules in the cycle
def mean(lst):
return sum(lst) / len(lst)
def median(lst):
tmp = list(sorted(lst))
n = len(lst)
if n % 2 == 1:
return tmp[n // 2] # e.g. tmp[5] if n = 11
else:
return (tmp[n // 2 - 1] + tmp[n // 2]) / 2 # e.g. avg of tmp[4] and tmp[5] if n = 10
return min(lengths), mean(lengths), median(lengths), max(lengths)
print(
"Number of modules in a cycle: min = {}, average = {:0.2g}, median = {:0.2g}, max = {}".format(*stats())
)
for c in sorted(unique_cycles):
print(" {}".format(c))
# # we could generate a plaintext report like this (with caveats; see TODO above)
# ms = v.modules
# for m in sorted(ms):
# print(m)
# for d in sorted(ms[m]):
# print(" {}".format(d))
# Postprocessing: format graph report
make_graph = options.dot or options.tgf or options.yed
if make_graph:
v.prepare_graph()
# print(v.nodes, v.uses_edges)
graph = pyan.visgraph.VisualGraph.from_visitor(v, options=graph_options, logger=logger)
if options.dot:
writer = pyan.writers.DotWriter(
graph, options=["rankdir=" + options.rankdir], output=options.filename, logger=logger
)
if options.tgf:
writer = pyan.writers.TgfWriter(graph, output=options.filename, logger=logger)
if options.yed:
writer = pyan.writers.YedWriter(graph, output=options.filename, logger=logger)
if make_graph:
writer.run()
if __name__ == "__main__":
main()