This repository was archived by the owner on May 15, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathutils.py
541 lines (415 loc) · 19 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
import os
import re
import argparse
import numpy as np
import random
import monai
import time
# from networks import build_net
import logging
import os
import sys
import tempfile
from glob import glob
from ignite.metrics import Accuracy
import nibabel as nib
import torch
import argparse
from monai.data import CacheDataset, DataLoader, Dataset
import SimpleITK as sitk
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai.data import NiftiSaver, create_test_image_3d, list_data_collate
from collections import OrderedDict
from monai.handlers import (MeanDice, StatsHandler, ValidationHandler, CheckpointSaver, LrScheduleHandler, CheckpointLoader,
SegmentationSaver, TensorBoardImageHandler, TensorBoardStatsHandler)
from monai.inferers import SimpleInferer, SlidingWindowInferer
from monai.utils import set_determinism
import re
from monai.data import create_test_image_3d, list_data_collate
from monai.inferers import sliding_window_inference
from monai.transforms import (Activationsd,MeanEnsembled, GaussianSmoothd, CropForegroundd, ThresholdIntensityd, Activations,AsDiscrete, LoadImaged, AsChannelFirstd, VoteEnsembled, AsDiscreted, Compose, AddChanneld, Transpose, ConcatItemsd,
ScaleIntensityd, Resized,ToTensord, RandSpatialCropd, Rand3DElasticd, RandAffined, RandGaussianSmoothd, SpatialPadd,
Spacingd, Orientationd, RandShiftIntensityd, BorderPadd, RandGaussianNoised, RandAdjustContrastd,NormalizeIntensityd,RandFlipd, KeepLargestConnectedComponent)
from monai.engines import (
EnsembleEvaluator,
SupervisedEvaluator,
SupervisedTrainer
)
from skimage.measure import label
def getLargestCC(segmentation):
labels = label(segmentation)
unique, counts = np.unique(labels, return_counts=True)
list_seg=list(zip(unique, counts))[1:] # the 0 label is by default background so take the rest
largest=max(list_seg, key=lambda x:x[1])[0]
labels_max=(labels == largest).astype(int)
return labels_max
def Padding(image, reference):
size_new = reference.GetSize()
output_size = tuple(size_new)
resampler = sitk.ResampleImageFilter()
resampler.SetOutputSpacing(reference.GetSpacing())
resampler.SetSize(output_size)
# resample on label
resampler.SetInterpolator(sitk.sitkNearestNeighbor)
resampler.SetOutputOrigin(reference.GetOrigin())
resampler.SetOutputDirection(reference.GetDirection())
image = resampler.Execute(image)
return image
def resize(img, new_size, interpolator):
# img = sitk.ReadImage(img)
dimension = img.GetDimension()
# Physical image size corresponds to the largest physical size in the training set, or any other arbitrary size.
reference_physical_size = np.zeros(dimension)
reference_physical_size[:] = [(sz - 1) * spc if sz * spc > mx else mx for sz, spc, mx in
zip(img.GetSize(), img.GetSpacing(), reference_physical_size)]
# Create the reference image with a zero origin, identity direction cosine matrix and dimension
reference_origin = np.zeros(dimension)
reference_direction = np.identity(dimension).flatten()
reference_size = new_size
reference_spacing = [phys_sz / (sz - 1) for sz, phys_sz in zip(reference_size, reference_physical_size)]
reference_image = sitk.Image(reference_size, img.GetPixelIDValue())
reference_image.SetOrigin(reference_origin)
reference_image.SetSpacing(reference_spacing)
reference_image.SetDirection(reference_direction)
# Always use the TransformContinuousIndexToPhysicalPoint to compute an indexed point's physical coordinates as
# this takes into account size, spacing and direction cosines. For the vast majority of images the direction
# cosines are the identity matrix, but when this isn't the case simply multiplying the central index by the
# spacing will not yield the correct coordinates resulting in a long debugging session.
reference_center = np.array(
reference_image.TransformContinuousIndexToPhysicalPoint(np.array(reference_image.GetSize()) / 2.0))
# Transform which maps from the reference_image to the current img with the translation mapping the image
# origins to each other.
transform = sitk.AffineTransform(dimension)
transform.SetMatrix(img.GetDirection())
transform.SetTranslation(np.array(img.GetOrigin()) - reference_origin)
# Modify the transformation to align the centers of the original and reference image instead of their origins.
centering_transform = sitk.TranslationTransform(dimension)
img_center = np.array(img.TransformContinuousIndexToPhysicalPoint(np.array(img.GetSize()) / 2.0))
centering_transform.SetOffset(np.array(transform.GetInverse().TransformPoint(img_center) - reference_center))
# centered_transform = sitk.Transform(transform)
# centered_transform.AddTransform(centering_transform)
centered_transform = sitk.CompositeTransform([transform, centering_transform])
# Using the linear interpolator as these are intensity images, if there is a need to resample a ground truth
# segmentation then the segmentation image should be resampled using the NearestNeighbor interpolator so that
# no new labels are introduced.
return sitk.Resample(img, reference_image, centered_transform, interpolator, 0.0)
def resample_sitk_image(sitk_image, spacing=None, interpolator=None, fill_value=0):
# https://github.com/SimpleITK/SlicerSimpleFilters/blob/master/SimpleFilters/SimpleFilters.py
_SITK_INTERPOLATOR_DICT = {
'nearest': sitk.sitkNearestNeighbor,
'linear': sitk.sitkLinear,
'gaussian': sitk.sitkGaussian,
'label_gaussian': sitk.sitkLabelGaussian,
'bspline': sitk.sitkBSpline,
'hamming_sinc': sitk.sitkHammingWindowedSinc,
'cosine_windowed_sinc': sitk.sitkCosineWindowedSinc,
'welch_windowed_sinc': sitk.sitkWelchWindowedSinc,
'lanczos_windowed_sinc': sitk.sitkLanczosWindowedSinc
}
if isinstance(sitk_image, str):
sitk_image = sitk.ReadImage(sitk_image)
num_dim = sitk_image.GetDimension()
if not interpolator:
interpolator = 'linear'
pixelid = sitk_image.GetPixelIDValue()
if pixelid not in [1, 2, 4]:
raise NotImplementedError(
'Set `interpolator` manually, '
'can only infer for 8-bit unsigned or 16, 32-bit signed integers')
if pixelid == 1: # 8-bit unsigned int
interpolator = 'nearest'
orig_pixelid = sitk_image.GetPixelIDValue()
orig_origin = sitk_image.GetOrigin()
orig_direction = sitk_image.GetDirection()
orig_spacing = np.array(sitk_image.GetSpacing())
orig_size = np.array(sitk_image.GetSize(), dtype=np.int)
if not spacing:
min_spacing = orig_spacing.min()
new_spacing = [min_spacing] * num_dim
else:
new_spacing = [float(s) for s in spacing]
assert interpolator in _SITK_INTERPOLATOR_DICT.keys(), \
'`interpolator` should be one of {}'.format(_SITK_INTERPOLATOR_DICT.keys())
sitk_interpolator = _SITK_INTERPOLATOR_DICT[interpolator]
new_size = orig_size * (orig_spacing / new_spacing)
new_size = np.ceil(new_size).astype(np.int) # Image dimensions are in integers
new_size = [int(s) for s in new_size] # SimpleITK expects lists, not ndarrays
resample_filter = sitk.ResampleImageFilter()
resample_filter.SetOutputSpacing(new_spacing)
resample_filter.SetSize(new_size)
resample_filter.SetOutputDirection(orig_direction)
resample_filter.SetOutputOrigin(orig_origin)
resample_filter.SetTransform(sitk.Transform())
resample_filter.SetDefaultPixelValue(orig_pixelid)
resample_filter.SetInterpolator(sitk_interpolator)
resample_filter.SetDefaultPixelValue(fill_value)
resampled_sitk_image = resample_filter.Execute(sitk_image)
return resampled_sitk_image
def numericalSort(value):
numbers = re.compile(r'(\d+)')
parts = numbers.split(value)
parts[1::2] = map(int, parts[1::2])
return parts
def lstFiles(Path):
images_list = [] # create an empty list, the raw image data files is stored here
for dirName, subdirList, fileList in os.walk(Path):
for filename in fileList:
if ".nii.gz" in filename.lower():
images_list.append(os.path.join(dirName, filename))
elif ".nii" in filename.lower():
images_list.append(os.path.join(dirName, filename))
elif ".mhd" in filename.lower():
images_list.append(os.path.join(dirName, filename))
images_list = sorted(images_list, key=numericalSort)
return images_list
def new_state_dict(file_name):
state_dict = torch.load(file_name)
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if k[:6] == 'module':
name = k[7:]
new_state_dict[name] = v
else:
new_state_dict[k] = v
return new_state_dict
def new_state_dict_cpu(file_name):
state_dict = torch.load(file_name, map_location='cpu')
new_state_dict_cpu = OrderedDict()
for k, v in state_dict.items():
if k[:6] == 'module':
name = k[7:]
new_state_dict_cpu[name] = v
else:
new_state_dict_cpu[k] = v
return new_state_dict_cpu
def from_numpy_to_itk(image_np, image_itk):
# read image file
reader = sitk.ImageFileReader()
reader.SetFileName(image_itk)
image_itk = reader.Execute()
image_np = np.transpose(image_np, (2, 1, 0))
image = sitk.GetImageFromArray(image_np)
image.SetDirection(image_itk.GetDirection())
image.SetSpacing(image_itk.GetSpacing())
image.SetOrigin(image_itk.GetOrigin())
return image
# function to keep track of the cropped area and coordinates
def statistics_crop(image, resolution):
files = [{"image": image}]
reader = sitk.ImageFileReader()
reader.SetFileName(image)
image_itk = reader.Execute()
original_resolution = image_itk.GetSpacing()
# original size
transforms = Compose([
LoadImaged(keys=['image']),
AddChanneld(keys=['image']),
ToTensord(keys=['image'])])
data = monai.data.Dataset(data=files, transform=transforms)
loader = DataLoader(data, batch_size=1, num_workers=0, pin_memory=torch.cuda.is_available())
loader = monai.utils.misc.first(loader)
im, = (loader['image'][0])
vol = im.numpy()
original_shape = vol.shape
# cropped foreground size
transforms = Compose([
LoadImaged(keys=['image']),
AddChanneld(keys=['image']),
CropForegroundd(keys=['image'], source_key='image', start_coord_key='foreground_start_coord',
end_coord_key='foreground_end_coord', ), # crop CropForeground
ToTensord(keys=['image', 'foreground_start_coord', 'foreground_end_coord'])])
data = monai.data.Dataset(data=files, transform=transforms)
loader = DataLoader(data, batch_size=1, num_workers=0, pin_memory=torch.cuda.is_available())
loader = monai.utils.misc.first(loader)
im, coord1, coord2 = (loader['image'][0], loader['foreground_start_coord'][0], loader['foreground_end_coord'][0])
vol = im[0].numpy()
coord1 = coord1.numpy()
coord2 = coord2.numpy()
crop_shape = vol.shape
if resolution is not None:
transforms = Compose([
LoadImaged(keys=['image']),
AddChanneld(keys=['image']),
CropForegroundd(keys=['image'], source_key='image'), # crop CropForeground
Spacingd(keys=['image'], pixdim=resolution, mode=('bilinear')), # resolution
ToTensord(keys=['image'])])
data = monai.data.Dataset(data=files, transform=transforms)
loader = DataLoader(data, batch_size=1, num_workers=0, pin_memory=torch.cuda.is_available())
loader = monai.utils.misc.first(loader)
im, = (loader['image'][0])
vol = im.numpy()
resampled_size = vol.shape
else:
resampled_size = original_shape
return original_shape, crop_shape, coord1, coord2, resampled_size, original_resolution
def build_net_CT(patch_size,resolution):
from monai.networks.layers import Norm
sizes, spacings = patch_size, resolution
strides, kernels = [], []
while True:
spacing_ratio = [sp / min(spacings) for sp in spacings]
stride = [2 if ratio <= 2 and size >= 8 else 1 for (ratio, size) in zip(spacing_ratio, sizes)]
kernel = [3 if ratio <= 2 else 1 for ratio in spacing_ratio]
if all(s == 1 for s in stride):
break
sizes = [i / j for i, j in zip(sizes, stride)]
spacings = [i * j for i, j in zip(spacings, stride)]
kernels.append(kernel)
strides.append(stride)
strides.insert(0, len(spacings) * [1])
kernels.append(len(spacings) * [3])
# # create Unet
nn_Unet = monai.networks.nets.DynUNet(
spatial_dims=3,
in_channels=1,
out_channels=1,
kernel_size=kernels,
strides=strides,
upsample_kernel_size=strides[1:],
res_block=True,
)
return nn_Unet
def crop_window(prostate_contour):
# Cut data, restricted to the prostate contours + a pitch per direction per dimension.
"""
nrrd has the following format, assuming to watch the patient from the front:
(x, y, z)
x: left to right (ascending)
y: front to back (ascending)
z: bottom to top (ascending)
"""
pitch = 5
pattern = np.where(prostate_contour == 1)
minx = np.min(pattern[0]) - pitch
maxx = np.max(pattern[0]) + pitch
miny = np.min(pattern[1]) - pitch
maxy = np.max(pattern[1]) + pitch
minz = np.min(pattern[2]) - pitch
maxz = np.max(pattern[2]) + pitch
if (maxx - minx) % 2 != 0:
maxx += 1
if (maxy - miny) % 2 != 0:
maxy += 1
if (maxz - minz) % 2 != 0:
maxz += 1
"""
Choose all tensors to have size of 64x64x64
"""
limit = 32
while maxx - minx < limit:
maxx += 1
minx -= 1
while maxy - miny < limit:
maxy += 1
miny -= 1
while maxz - minz < limit:
maxz += 1
minz -= 1
return minx, maxx, miny, maxy, minz, maxz
def uniform_img_dimensions(image, label, nearest):
image_array = sitk.GetArrayFromImage(image)
image_array = np.transpose(image_array, axes=(2, 1, 0)) # reshape array from itk z,y,x to x,y,z
image_shape = image_array.shape
if nearest is True:
label = resample_sitk_image(label, spacing=image.GetSpacing(), interpolator='nearest')
res = resize(label,image_shape,sitk.sitkNearestNeighbor)
res = (np.rint(sitk.GetArrayFromImage(res)))
res = sitk.GetImageFromArray(res.astype('uint8'))
# print(res.GetSize())
else:
label = resample_sitk_image(label, spacing=image.GetSpacing(), interpolator='linear')
res = resize(label, image_shape, sitk.sitkLinear)
res = (np.rint(sitk.GetArrayFromImage(res)))
res = sitk.GetImageFromArray(res.astype('float'))
res.SetDirection(image.GetDirection())
res.SetOrigin(image.GetOrigin())
res.SetSpacing(image.GetSpacing())
return image, res
def uniform_img_dimensions_internal(image, label, nearest):
name_label = label
image = sitk.ReadImage(image)
label = sitk.ReadImage(label)
image_array = sitk.GetArrayFromImage(image)
image_array = np.transpose(image_array, axes=(2, 1, 0)) # reshape array from itk z,y,x to x,y,z
image_shape = image_array.shape
if nearest is True:
label = resample_sitk_image(label, spacing=image.GetSpacing(), interpolator='nearest')
res = resize(label,image_shape,sitk.sitkNearestNeighbor)
res = (np.rint(sitk.GetArrayFromImage(res)))
res = sitk.GetImageFromArray(res.astype('uint8'))
# print(res.GetSize())
else:
label = resample_sitk_image(label, spacing=image.GetSpacing(), interpolator='linear')
res = resize(label, image_shape, sitk.sitkLinear)
res = (np.rint(sitk.GetArrayFromImage(res)))
res = sitk.GetImageFromArray(res.astype('float'))
res.SetDirection(image.GetDirection())
res.SetOrigin(image.GetOrigin())
res.SetSpacing(image.GetSpacing())
sitk.WriteImage(res, name_label)
def normalize_PET(image_itk, value):
# read image file
image_np = sitk.GetArrayFromImage(image_itk)
image_np = image_np/value
image = sitk.GetImageFromArray(image_np)
image.SetDirection(image_itk.GetDirection())
image.SetSpacing(image_itk.GetSpacing())
image.SetOrigin(image_itk.GetOrigin())
return image
def processing_itk(label_CT, image_PET, label_PET, gluteus, new_resolution, patch_size):
gluteus = sitk.ReadImage(gluteus)
label_CT = sitk.ReadImage(label_CT)
image_PET = sitk.ReadImage(image_PET)
if label_PET is not None:
label_PET = sitk.ReadImage(label_PET)
if new_resolution is not None:
image_PET = resample_sitk_image(image_PET, spacing=new_resolution, interpolator='linear')
label_CT = Padding(label_CT, image_PET)
gluteus = Padding(gluteus, image_PET)
image_PET, label_CT = uniform_img_dimensions(image_PET, label_CT, True)
image_PET, gluteus = uniform_img_dimensions(image_PET, gluteus, True)
# new part for Pet tumor_background normalization
gluteos_ROI_array = sitk.GetArrayFromImage(gluteus)
gluteos_ROI_index = np.where(gluteos_ROI_array == 1)
PET_array = sitk.GetArrayFromImage(image_PET)
avg = np.mean(PET_array[gluteos_ROI_index])
image_PET = normalize_PET(image_PET, avg)
# end normalization
if label_PET is not None:
label_PET = Padding(label_PET, image_PET)
image_PET, label_PET = uniform_img_dimensions(image_PET, label_PET, True)
label_CT_array = sitk.GetArrayFromImage(label_CT)
minx, maxx, miny, maxy, minz, maxz = crop_window(label_CT_array)
roiFilter = sitk.RegionOfInterestImageFilter()
roiFilter.SetSize(patch_size)
roiFilter.SetIndex([int(minz), int(miny), int(minx)])
label_CT = roiFilter.Execute(label_CT)
image_PET = roiFilter.Execute(image_PET)
if label_PET is not None:
label_PET = roiFilter.Execute(label_PET)
else:
label_PET = None
sitk.WriteImage(label_CT, 'mask_crop.nii')
sitk.WriteImage(image_PET, 'result.nii')
if label_PET is not None:
sitk.WriteImage(label_PET, 'label_crop.nii')
def gaussian2(image):
resacleFilter = sitk.RescaleIntensityImageFilter()
resacleFilter.SetOutputMaximum(255)
resacleFilter.SetOutputMinimum(0)
image = resacleFilter.Execute(image) # set intensity 0-255
gaussianFilter = sitk.SmoothingRecursiveGaussianImageFilter()
gaussianFilter.SetSigma(3)
image = gaussianFilter.Execute(image)
resacleFilter = sitk.RescaleIntensityImageFilter()
resacleFilter.SetOutputMaximum(1)
resacleFilter.SetOutputMinimum(0)
image = resacleFilter.Execute(image) # set intensity 0-255
thresholdFilter = sitk.BinaryThresholdImageFilter()
thresholdFilter.SetLowerThreshold(0.5)
thresholdFilter.SetUpperThreshold(2)
thresholdFilter.SetInsideValue(1)
thresholdFilter.SetOutsideValue(0)
image = thresholdFilter.Execute(image)
return image