forked from lorenlugosch/end-to-end-SLU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
435 lines (361 loc) · 17.8 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import torch
import torchaudio; torchaudio.initialize_sox()
import torch.utils.data
import os, glob
from collections import Counter
import soundfile as sf
import numpy as np
import configparser
import textgrid
import multiprocessing
import json
import pandas as pd
from subprocess import call
class Config:
def __init__(self):
self.use_sincnet = True
def read_config(config_file):
config = Config()
parser = configparser.ConfigParser()
parser.read(config_file)
#[experiment]
config.seed=int(parser.get("experiment", "seed"))
config.folder=parser.get("experiment", "folder")
# Make a folder containing experiment information
if not os.path.isdir(config.folder):
os.mkdir(config.folder)
os.mkdir(os.path.join(config.folder, "pretraining"))
os.mkdir(os.path.join(config.folder, "training"))
call("cp " + config_file + " " + os.path.join(config.folder, "experiment.cfg"), shell=True)
#[phoneme_module]
config.use_sincnet=(parser.get("phoneme_module", "use_sincnet") == "True")
config.fs=int(parser.get("phoneme_module", "fs"))
config.cnn_N_filt=[int(x) for x in parser.get("phoneme_module", "cnn_N_filt").split(",")]
config.cnn_len_filt=[int(x) for x in parser.get("phoneme_module", "cnn_len_filt").split(",")]
config.cnn_stride=[int(x) for x in parser.get("phoneme_module", "cnn_stride").split(",")]
config.cnn_max_pool_len=[int(x) for x in parser.get("phoneme_module", "cnn_max_pool_len").split(",")]
config.cnn_act=[x for x in parser.get("phoneme_module", "cnn_act").split(",")]
config.cnn_drop=[float(x) for x in parser.get("phoneme_module", "cnn_drop").split(",")]
config.phone_rnn_num_hidden=[int(x) for x in parser.get("phoneme_module", "phone_rnn_num_hidden").split(",")]
config.phone_downsample_len=[int(x) for x in parser.get("phoneme_module", "phone_downsample_len").split(",")]
config.phone_downsample_type=[x for x in parser.get("phoneme_module", "phone_downsample_type").split(",")]
config.phone_rnn_drop=[float(x) for x in parser.get("phoneme_module", "phone_rnn_drop").split(",")]
config.phone_rnn_bidirectional=(parser.get("phoneme_module", "phone_rnn_bidirectional") == "True")
#[word_module]
config.word_rnn_num_hidden=[int(x) for x in parser.get("word_module", "word_rnn_num_hidden").split(",")]
config.word_downsample_len=[int(x) for x in parser.get("word_module", "word_downsample_len").split(",")]
config.word_downsample_type=[x for x in parser.get("word_module", "word_downsample_type").split(",")]
config.word_rnn_drop=[float(x) for x in parser.get("word_module", "word_rnn_drop").split(",")]
config.word_rnn_bidirectional=(parser.get("word_module", "word_rnn_bidirectional") == "True")
config.vocabulary_size=int(parser.get("word_module", "vocabulary_size"))
#[intent_module]
config.intent_rnn_num_hidden=[int(x) for x in parser.get("intent_module", "intent_rnn_num_hidden").split(",")]
config.intent_downsample_len=[int(x) for x in parser.get("intent_module", "intent_downsample_len").split(",")]
config.intent_downsample_type=[x for x in parser.get("intent_module", "intent_downsample_type").split(",")]
config.intent_rnn_drop=[float(x) for x in parser.get("intent_module", "intent_rnn_drop").split(",")]
config.intent_rnn_bidirectional=(parser.get("intent_module", "intent_rnn_bidirectional") == "True")
#[pretraining]
config.asr_path=parser.get("pretraining", "asr_path")
config.pretraining_type=int(parser.get("pretraining", "pretraining_type")) # 0 - no pre-training, 1 - phoneme pre-training, 2 - phoneme + word pre-training, 3 - word pre-training
if config.pretraining_type == 0: config.starting_unfreezing_index = 1 + len(config.word_rnn_num_hidden) + len(config.phone_rnn_num_hidden) + len(config.cnn_N_filt)
if config.pretraining_type == 1: config.starting_unfreezing_index = 1 + len(config.word_rnn_num_hidden)
if config.pretraining_type == 2: config.starting_unfreezing_index = 1
if config.pretraining_type == 3: config.starting_unfreezing_index = 1
config.pretraining_lr=float(parser.get("pretraining", "pretraining_lr"))
config.pretraining_batch_size=int(parser.get("pretraining", "pretraining_batch_size"))
config.pretraining_num_epochs=int(parser.get("pretraining", "pretraining_num_epochs"))
config.pretraining_length_mean=float(parser.get("pretraining", "pretraining_length_mean"))
config.pretraining_length_var=float(parser.get("pretraining", "pretraining_length_var"))
#[training]
config.slu_path=parser.get("training", "slu_path")
config.unfreezing_type=int(parser.get("training", "unfreezing_type"))
config.training_lr=float(parser.get("training", "training_lr"))
config.training_batch_size=int(parser.get("training", "training_batch_size"))
config.training_num_epochs=int(parser.get("training", "training_num_epochs"))
config.dataset_subset_percentage=float(parser.get("training", "dataset_subset_percentage"))
config.train_wording_path=parser.get("training", "train_wording_path")
if config.train_wording_path=="None": config.train_wording_path = None
config.test_wording_path=parser.get("training", "test_wording_path")
if config.test_wording_path=="None": config.test_wording_path = None
# compute downsample factor (divide T by this number)
config.phone_downsample_factor = 1
for factor in config.cnn_stride + config.cnn_max_pool_len + config.phone_downsample_len:
config.phone_downsample_factor *= factor
config.word_downsample_factor = 1
for factor in config.cnn_stride + config.cnn_max_pool_len + config.phone_downsample_len + config.word_downsample_len:
config.word_downsample_factor *= factor
return config
def get_SLU_datasets(config):
"""
config: Config object (contains info about model and training)
"""
base_path = config.slu_path
# Split
train_df = pd.read_csv(os.path.join(base_path, "data", "train_data.csv"))
valid_df = pd.read_csv(os.path.join(base_path, "data", "valid_data.csv"))
test_df = pd.read_csv(os.path.join(base_path, "data", "test_data.csv"))
# Get list of slots
Sy_intent = {"action": {}, "object": {}, "location": {}}
values_per_slot = []
for slot in ["action", "object", "location"]:
slot_values = Counter(train_df[slot])
for idx,value in enumerate(slot_values):
Sy_intent[slot][value] = idx
values_per_slot.append(len(slot_values))
config.values_per_slot = values_per_slot
config.Sy_intent = Sy_intent
# If certain phrases are specified, only use those phrases
if config.train_wording_path is not None:
with open(config.train_wording_path, "r") as f:
train_wordings = [line.strip() for line in f.readlines()]
train_df = train_df.loc[train_df.transcription.isin(train_wordings)]
train_df = train_df.set_index(np.arange(len(train_df)))
if config.test_wording_path is not None:
with open(config.test_wording_path, "r") as f:
test_wordings = [line.strip() for line in f.readlines()]
valid_df = valid_df.loc[valid_df.transcription.isin(test_wordings)]
valid_df = valid_df.set_index(np.arange(len(valid_df)))
test_df = test_df.loc[test_df.transcription.isin(test_wordings)]
test_df = test_df.set_index(np.arange(len(test_df)))
# Get number of phonemes
if os.path.isfile(os.path.join(config.folder, "pretraining", "phonemes.txt")):
Sy_phoneme = []
with open(os.path.join(config.folder, "pretraining", "phonemes.txt"), "r") as f:
for line in f.readlines():
if line.rstrip("\n") != "": Sy_phoneme.append(line.rstrip("\n"))
config.num_phonemes = len(Sy_phoneme)
else:
print("No phoneme file found.")
# Select random subset of training data
if config.dataset_subset_percentage < 1:
subset_size = round(config.dataset_subset_percentage * len(train_df))
train_df = train_df.loc[np.random.choice(len(train_df), subset_size, replace=False)]
train_df = train_df.set_index(np.arange(len(train_df)))
# Create dataset objects
train_dataset = SLUDataset(train_df, base_path, Sy_intent, config, augment=True)
valid_dataset = SLUDataset(valid_df, base_path, Sy_intent, config)
test_dataset = SLUDataset(test_df, base_path, Sy_intent, config)
return train_dataset, valid_dataset, test_dataset
# taken from https://github.com/jfsantos/maracas/blob/master/maracas/maracas.py
def rms_energy(x):
return 10*np.log10((1e-12 + x.dot(x))/len(x))
class SLUDataset(torch.utils.data.Dataset):
def __init__(self, df, base_path, Sy_intent, config, augment=False):
"""
df:
Sy_intent: Dictionary (transcript --> slot values)
config: Config object (contains info about model and training)
"""
self.df = df
self.base_path = base_path
# self.max_length = 200000 # truncate audios longer than this
self.Sy_intent = Sy_intent
self.augment = augment
len_df = len(self.df)
self.loader = torch.utils.data.DataLoader(self, batch_size=config.training_batch_size, num_workers=multiprocessing.cpu_count(), shuffle=True, collate_fn=CollateWavsSLU(augment=augment, len_df=len_df))
def __len__(self):
if self.augment: return len(self.df)*2 # second half of dataset is augmented
else: return len(self.df)
def __getitem__(self, idx):
augment = ((idx / len(self.df)) > 1) and self.augment
true_idx = idx
idx = idx % len(self.df)
wav_path = os.path.join(self.base_path, self.df.loc[idx].path)
effect = torchaudio.sox_effects.SoxEffectsChain()
effect.set_input_file(wav_path)
# if augment:
# speed/tempo
# min_speed = 0.9; max_speed = 1.1; speed_range = max_speed-min_speed
# speed = speed_range * np.random.rand(1)[0] + min_speed
# effect.append_effect_to_chain("tempo", speed)
# del speed
# volume
#min_gain = -10; max_gain = 10; gain_range = max_gain-min_gain
#gain_dB = gain_range * np.random.rand(1)[0] + min_gain
#gain = 10**(gain_dB/20)
#effect.append_effect_to_chain("vol", gain)
#del gain_dB
wav, fs = effect.sox_build_flow_effects()
x = wav[0].numpy()
del wav, effect
y_intent = []
for slot in ["action", "object", "location"]:
value = self.df.loc[idx][slot]
y_intent.append(self.Sy_intent[slot][value])
return (x, y_intent, true_idx)
class CollateWavsSLU:
def __init__(self, augment=False, len_df=0):
self.augment = augment
self.len_df=len_df
noise_paths = glob.glob("noise/*.wav")
self.noises = [sf.read(path)[0] for path in noise_paths]
self.SNRs = [0,5,10,15,20]
def __call__(self, batch):
"""
batch: list of tuples (input wav, intent labels)
Returns a minibatch of wavs and labels as Tensors.
"""
x = []; y_intent = []
batch_size = len(batch)
for index in range(batch_size):
x_,y_intent_,index_ = batch[index]
# augment = self.augment and (index_ / self.len_df) > 1
# if augment:
# # crop
# min_length = round(x_.shape[0]*0.9); max_length = round(x_.shape[0]*1.1); length_range=max_length-min_length
# length = int(length_range * np.random.rand(1)[0] + min_length)
# start = int((x_.shape[0]-length)/2)
# if start < 0:
# left_padding = -start
# right_padding = length-(x_.shape[0]-start)
# x_ = np.pad(x_,(left_padding, right_padding),mode="constant")
# else:
# start += np.random.randint(low=-start, high=1, size=1)[0]
# x_ = x_[start:start+length]
# length = x_.shape[0]
# # noise (taken from https://github.com/jfsantos/maracas/blob/master/maracas/maracas.py)
# noise = np.random.choice(self.noises, 1, p=[1/len(self.noises) for _ in range(len(self.noises))])[0]
# snr = np.random.choice(self.SNRs, 1, p=[1/len(self.SNRs) for _ in range(len(self.SNRs))])[0]
# start = np.random.randint(low=0, high=len(noise)-length, size=1)[0]
# end = start + length
# noise = noise[start:end]
# N_dB = rms_energy(noise)
# S_dB = rms_energy(x_)
# N_new = S_dB - snr
# noise_scaled = 10**(N_new/20) * noise / 10**(N_dB/20)
# x_ = x_ + noise_scaled
x.append(torch.tensor(x_).float())
y_intent.append(torch.tensor(y_intent_).long())
# pad all sequences to have same length
T = max([len(x_) for x_ in x])
for index in range(batch_size):
x_pad_length = (T - len(x[index]))
x[index] = torch.nn.functional.pad(x[index], (0,x_pad_length))
x = torch.stack(x)
y_intent = torch.stack(y_intent)
return (x,y_intent)
def get_ASR_datasets(config):
"""
Assumes that the data directory contains the following two directories:
"audio" : wav files (split into train-clean, train-other, ...)
"text" : alignments for each wav
config: Config object (contains info about model and training)
"""
base_path = config.asr_path
# Get only files with a label
train_textgrid_paths = glob.glob(base_path + "/text/train*/*/*/*.TextGrid")
train_wav_paths = [path.replace("text", "audio").replace(".TextGrid", ".wav") for path in train_textgrid_paths]
valid_textgrid_paths = glob.glob(base_path + "/text/dev*/*/*/*.TextGrid")
valid_wav_paths = [path.replace("text", "audio").replace(".TextGrid", ".wav") for path in valid_textgrid_paths]
test_textgrid_paths = glob.glob(base_path + "/text/test*/*/*/*.TextGrid")
test_wav_paths = [path.replace("text", "audio").replace(".TextGrid", ".wav") for path in test_textgrid_paths]
# Get list of phonemes and words
if os.path.isfile(os.path.join(config.folder, "pretraining", "phonemes.txt")) and os.path.isfile(os.path.join(config.folder, "pretraining", "words.txt")):
Sy_phoneme = []
with open(os.path.join(config.folder, "pretraining", "phonemes.txt"), "r") as f:
for line in f.readlines():
if line.rstrip("\n") != "": Sy_phoneme.append(line.rstrip("\n"))
config.num_phonemes = len(Sy_phoneme)
Sy_word = []
with open(os.path.join(config.folder, "pretraining", "words.txt"), "r") as f:
for line in f.readlines():
Sy_word.append(line.rstrip("\n"))
else:
print("Getting vocabulary...")
phoneme_counter = Counter()
word_counter = Counter()
for path in valid_textgrid_paths:
tg = textgrid.TextGrid()
tg.read(path)
phoneme_counter.update([phone.mark.rstrip("0123456789") for phone in tg.getList("phones")[0] if phone.mark != ''])
word_counter.update([word.mark for word in tg.getList("words")[0]]) #if word.mark != ''])
Sy_phoneme = list(phoneme_counter)
Sy_word = [w[0] for w in word_counter.most_common(config.vocabulary_size)]
config.num_phonemes = len(Sy_phoneme)
with open(os.path.join(config.folder, "pretraining", "phonemes.txt"), "w") as f:
for phoneme in Sy_phoneme:
f.write(phoneme + "\n")
with open(os.path.join(config.folder, "pretraining", "words.txt"), "w") as f:
for word in Sy_word:
f.write(word + "\n")
print("Done.")
# Create dataset objects
train_dataset = ASRDataset(train_wav_paths, train_textgrid_paths, Sy_phoneme, Sy_word, config)
valid_dataset = ASRDataset(valid_wav_paths, valid_textgrid_paths, Sy_phoneme, Sy_word, config)
test_dataset = ASRDataset(test_wav_paths, test_textgrid_paths, Sy_phoneme, Sy_word, config)
return train_dataset, valid_dataset, test_dataset
class ASRDataset(torch.utils.data.Dataset):
def __init__(self, wav_paths, textgrid_paths, Sy_phoneme, Sy_word, config):
"""
wav_paths: list of strings (wav file paths)
textgrid_paths: list of strings (textgrid for each wav file)
Sy_phoneme: list of strings (all possible phonemes)
Sy_word: list of strings (all possible words)
config: Config object (contains info about model and training)
"""
self.wav_paths = wav_paths # list of wav file paths
self.textgrid_paths = textgrid_paths # list of textgrid file paths
self.length_mean = config.pretraining_length_mean
self.length_var = config.pretraining_length_var
self.Sy_phoneme = Sy_phoneme
self.Sy_word = Sy_word
self.phone_downsample_factor = config.phone_downsample_factor
self.word_downsample_factor = config.word_downsample_factor
self.loader = torch.utils.data.DataLoader(self, batch_size=config.pretraining_batch_size, num_workers=multiprocessing.cpu_count(), shuffle=True, collate_fn=CollateWavsASR())
def __len__(self):
return len(self.wav_paths)
def __getitem__(self, idx):
x, fs = sf.read(self.wav_paths[idx])
tg = textgrid.TextGrid()
tg.read(self.textgrid_paths[idx])
y_phoneme = []
for phoneme in tg.getList("phones")[0]:
duration = phoneme.maxTime - phoneme.minTime
phoneme_index = self.Sy_phoneme.index(phoneme.mark.rstrip("0123456789")) if phoneme.mark.rstrip("0123456789") in self.Sy_phoneme else -1
if phoneme.mark == '': phoneme_index = -1
y_phoneme += [phoneme_index] * round(duration * fs)
y_word = []
for word in tg.getList("words")[0]:
duration = word.maxTime - word.minTime
word_index = self.Sy_word.index(word.mark) if word.mark in self.Sy_word else -1
# if word.mark == '': word_index = -1
y_word += [word_index] * round(duration * fs)
# Cut a snippet of length random_length from the audio
random_length = round(fs * max(self.length_mean + self.length_var * torch.randn(1).item(), 0.5))
if len(x) <= random_length:
start = 0
else:
start = torch.randint(low=0, high=len(x)-random_length, size=(1,)).item()
end = start + random_length
x = x[start:end]
y_phoneme = y_phoneme[start:end:self.phone_downsample_factor]
y_word = y_word[start:end:self.word_downsample_factor]
return (x, y_phoneme, y_word)
class CollateWavsASR:
def __call__(self, batch):
"""
batch: list of tuples (input wav, phoneme labels, word labels)
Returns a minibatch of wavs and labels as Tensors.
"""
x = []; y_phoneme = []; y_word = []
batch_size = len(batch)
for index in range(batch_size):
x_,y_phoneme_, y_word_ = batch[index]
x.append(torch.tensor(x_).float())
y_phoneme.append(torch.tensor(y_phoneme_).long())
y_word.append(torch.tensor(y_word_).long())
# pad all sequences to have same length
T = max([len(x_) for x_ in x])
U_phoneme = max([len(y_phoneme_) for y_phoneme_ in y_phoneme])
U_word = max([len(y_word_) for y_word_ in y_word])
for index in range(batch_size):
x_pad_length = (T - len(x[index]))
x[index] = torch.nn.functional.pad(x[index], (0,x_pad_length))
y_pad_length = (U_phoneme - len(y_phoneme[index]))
y_phoneme[index] = torch.nn.functional.pad(y_phoneme[index], (0,y_pad_length), value=-1)
y_pad_length = (U_word - len(y_word[index]))
y_word[index] = torch.nn.functional.pad(y_word[index], (0,y_pad_length), value=-1)
x = torch.stack(x)
y_phoneme = torch.stack(y_phoneme)
y_word = torch.stack(y_word)
return (x,y_phoneme, y_word)