-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtfjs.html
92 lines (90 loc) · 4.19 KB
/
tfjs.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
<script type="text/html" data-template-name="tensorflowCoco">
<div class="form-row">
<label for="node-input-scoreThreshold"><i class="fa fa-signal"></i> Threshold</label>
<input type="text" id="node-input-scoreThreshold" placeholder="e.g. 0 - 1">
</div>
<div class="form-row">
<label for="node-input-modelUrl"><i class="fa fa-globe"></i> Model Url</label>
<input type="text" id="node-input-modelUrl" placeholder="leave blank to load from internet">
</div>
<div class="form-row">
<label for="node-input-passthru"><i class="fa fa-picture-o"></i> Passthru</label>
<select type="text" id="node-input-passthru" style="width:70%;">
<option value="false">Nothing</option>
<option value="true">Original Image</option>
<option value="bbox">Annotated Image</option>
</select>
</div>
<div class="form-row" id="node-bbox-colour">
<label for="node-input-lineColour"><i class="fa fa-paint-brush "></i> Box colour</label>
<input type="text" id="node-input-lineColour" placeholder="HTML5 colour or #rrggbb">
</div>
<div class="form-row">
<label for="node-input-name"><i class="fa fa-tag"></i> Name</label>
<input type="text" id="node-input-name" placeholder="Name">
</div>
</script>
<script type="text/html" data-help-name="tensorflowCoco">
<p>A <a href="https://www.tensorflow.org/js" target = "_new">TensorFlow.js</a> node to run CoCo simple object recognition.</p>
<h3>Inputs</h3>
<dl class="message-properties">
<dt>payload <span class="property-type">buffer | string</span></dt>
<dd>A binary buffer of a jpeg image, or string of a filename to load.</dd>
<dt>scoreThreshold <span class="property-type">number</span></dt>
<dd>Minimum threshold for a valid detection (0 - 1)</dd>
</dl>
<h3>Outputs</h3>
<dl class="message-properties">
<dt>payload <span class="property-type">array</span></dt>
<dd>an array of detected objects, containing :
<ul><li><code>bbox</code> array, [x,y,width,height]</li>
<li><code>class</code> string, detected object class</li>
<li><code>score</code> number, 0 -> 1.</li>
</ul></dd>
<dt>classes <span class="property-type">object</span></dt>
<dd>an object with each class and their counts, e.g. <code>{dog:3,cat:1}</code>.</dd>
<dt>shape <span class="property-type">array[3]</span></dt>
<dd>dimensions of the input image, [x,y,depth].</dd>
<dt>scoreThreshold <span class="property-type">number</span></dt>
<dd>the scoreThreshold value used in this detection.</dd>
<dt>image <span class="property-type">buffer</span></dt>
<dd>(optional) either the original image, or
the image annotated with detected bounding boxes.</dd>
</dl>
<h3>Details</h3>
<p>The configured scoreThreshold can be overridden dynamically
by setting the <code>msg.scoreThreshold</code> property.</p>
</script>
<script type="text/javascript">
RED.nodes.registerType('tensorflowCoco', {
category: 'analysis-function',
defaults: {
name: { value: "" },
modelUrl: { value: (location.origin||"http://localhost:1880")+RED.settings.httpNodeRoot+"coco/model.json" },
scoreThreshold: { value: 0.5 },
passthru: { value: "false" },
lineColour: { value: "magenta" }
},
inputs: 1,
outputs: 1,
paletteLabel: "tf coco ssd",
color: "#ED782F",
icon: "tfjs.png",
label: function() {
return this.name || "tf coco ssd";
},
oneditprepare: function() {
if (this.lineColour === undefined) {
$("#node-input-lineColour").val("magenta");
}
$("#node-input-passthru").change( function() {
if ($("#node-input-passthru").val() === "bbox") {
$("#node-bbox-colour").show();
}
else {
$("#node-bbox-colour").hide();
}
});
}
});
</script>