-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathVec.hs
46 lines (34 loc) · 1.42 KB
/
Vec.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
module Vec where
data Vector3 a = Vector3 { v3x, v3y, v3z :: !a } deriving (Eq, Show)
vfold :: (b -> t -> b) -> b -> Vector3 t -> b
vfold f i (Vector3 x y z) = ((i `f` x) `f` y) `f` z
vzip :: (t -> b -> a) -> Vector3 t -> Vector3 b -> Vector3 a
vzip f (Vector3 x0 y0 z0) (Vector3 x1 y1 z1) = Vector3 (f x0 x1) (f y0 y1) (f z0 z1)
instance Fractional a => Fractional (Vector3 a) where
(/) = vzip (/)
fromRational s = fmap fromRational (Vector3 s s s)
instance Functor Vector3 where
fmap f (Vector3 x y z) = Vector3 (f x) (f y) (f z)
instance Num a => Num (Vector3 a) where
(+) = vzip (+)
(-) = vzip (-)
(*) = vzip (*)
abs = fmap abs
negate = fmap negate
signum = fmap signum
fromInteger s = fmap fromInteger (Vector3 s s s)
fromFloat :: (Fractional a, Real b) => b -> a
fromFloat x = fromRational $ toRational x
vcross :: Num a => Vector3 a -> Vector3 a -> Vector3 a
vcross (Vector3 x0 y0 z0) (Vector3 x1 y1 z1) = Vector3 (y0 * z1 - z0 * y1) (z0 * x1 - x0 * z1) (x0 * y1 - y0 * x1)
vdot :: Num t => Vector3 t -> Vector3 t -> t
vdot v0 v1 = vfold (+) 0 $ vzip (*) v0 v1
vnormSq :: Num t => Vector3 t -> t
vnormSq v = vdot v v
vnorm = fromFloat . sqrt . vnormSq
vreflect v n = vscale (n + v) ((-2) * (vdot v n))
vscale v s = fmap (s *) v
vunit :: Vector3 Double -> Vector3 Double
vunit v = if vnormSq v == 0
then v
else v * (1 / vnorm v)