-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathlosses.py
871 lines (703 loc) · 30 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
from abc import ABC, abstractmethod
import numpy as np
from ...utils.testing import is_binary, is_stochastic
from ..initializers import (
WeightInitializer,
ActivationInitializer,
OptimizerInitializer,
)
class ObjectiveBase(ABC):
def __init__(self):
super().__init__()
@abstractmethod
def loss(self, y_true, y_pred):
pass
@abstractmethod
def grad(self, y_true, y_pred, **kwargs):
pass
class SquaredError(ObjectiveBase):
"""
The squared-error / L2 loss. For target `y` and predictions `y_pred`, this
is::
L(y, y_pred) = 0.5 * ||y_pred - y||^2
"""
def __init__(self):
super().__init__()
def __call__(self, y, y_pred):
return self.loss(y, y_pred)
def __str__(self):
return "SquaredError"
@staticmethod
def loss(y, y_pred):
"""
Compute the squared error (L2) loss between `y` and `y_pred`.
Parameters
----------
y : numpy array of shape (n, m)
Ground truth values for each of `n` examples
y_pred : numpy array of shape (n, m)
Predictions for the `n` examples in the batch
Returns
-------
loss : float
The sum of the squared error across dimensions and examples.
"""
return 0.5 * np.linalg.norm(y_pred - y) ** 2
@staticmethod
def grad(y, y_pred, z, act_fn):
"""
Gradient of the squared error loss with respect to the pre-nonlinearity
input, `z`.
Parameters
----------
y : numpy array of shape (n, m)
Ground truth values for each of `n` examples.
y_pred : numpy array of shape (n, m)
Predictions for the `n` examples in the batch.
act_fn : `Activation` object
The activation function for the output layer of the network.
Returns
-------
grad : numpy array of shape (n, m)
The gradient of the squared error loss with respect to `z`.
Notes
-----
The current method computes the gradient `dL/dZ`, where::
L(z) = squared_error(g(z))
g(z) = <act_fn>(z) = y_pred
In this case, the gradient with respect to `z` is simply ``(g(z) - y) *
g'(z)``.
"""
return (y_pred - y) * act_fn.grad(z)
class CrossEntropy(ObjectiveBase):
def __init__(self):
super().__init__()
def __call__(self, y, y_pred):
return self.loss(y, y_pred)
def __str__(self):
return "CrossEntropy"
@staticmethod
def loss(y, y_pred):
"""
Compute the cross-entropy (log) loss.
Parameters
----------
y : numpy array of shape (n, m)
Class labels (one-hot with `m` possible classes) for each of `n`
examples.
y_pred : numpy array of shape (n, m)
Probabilities of each of `m` classes for the `n` examples in the
batch.
Returns
-------
loss : float
The sum of the cross-entropy across classes and examples.
Notes
-----
This method returns the sum (not average!) of the losses per-sample.
"""
is_binary(y)
is_stochastic(y_pred)
# prevent taking the log of 0
eps = np.finfo(float).eps
# each example is associated with a single class; sum the negative log
# probability of the correct label over all samples in the batch.
# observe that we are taking advantage of the fact that y is one-hot
# encoded
cross_entropy = -np.sum(y * np.log(y_pred + eps))
return cross_entropy
@staticmethod
def grad(y, y_pred):
"""
Compute the gradient of the cross entropy loss with regard to the
softmax input, `z`.
Input
-----
y : numpy array of shape (n, m)
A one-hot encoding of the true class labels. Each row constitues a
training example, and each column is a different class
y_pred: numpy array of shape (n, m)
The network predictions for the probability of each of `m` class
labels on each of `n` examples in a batch.
Returns
-------
grad : numpy array of shape (n, m)
The gradient of the cross-entropy loss with respect to the *input*
to the softmax function.
Notes
-----
Note that this gradient goes through both the cross-entropy loss AND
the softmax non-linearity to return ``df / dz`` (rather than ``df / d
softmax(z)``).
In particular, let::
f(z) = cross_entropy(softmax(z)).
The current method computes::
df/dz = softmax(z) - y_true
= y_pred - y_true
"""
is_binary(y)
is_stochastic(y_pred)
# derivative of xe wrt z is y_pred - y_true, hence we can just
# subtract 1 from the probability of the correct class labels
grad = y_pred - y
# [optional] scale the gradients by the number of examples in the batch
# n, m = y.shape
# grad /= n
return grad
class VAELoss(ObjectiveBase):
"""
The variational lower bound for a variational autoencoder with Bernoulli
units.
The VLB to the sum of the binary cross entropy between the true input and
the predicted output (the "reconstruction loss") and the KL divergence
between the learned variational distribution :math:`q` and the prior,
:math:`p`, assumed to be a unit Gaussian.
VAELoss = BXE(y, y_pred) + KL[q || p]
where ``BxE`` is the binary cross-entropy between `y` and `y_pred`, and
``KL`` is the Kullback-Leibler divergence between the distributions
:math:`q` and :math:`p`.
References
----------
[1] Kingma & Welling (2014). "Auto-encoding variational Bayes". arXiv
preprint arXiv:1312.6114. https://arxiv.org/pdf/1312.6114.pdf
"""
def __init__(self):
super().__init__()
def __call__(self, y, y_pred, t_mean, t_log_var):
return self.loss(y, y_pred, t_mean, t_log_var)
def __str__(self):
return "VAELoss"
@staticmethod
def loss(y, y_pred, t_mean, t_log_var):
"""
Variational lower bound for a Bernoulli VAE.
Parameters
----------
y : numpy array of shape (n_ex, N)
The original images.
y_pred : numpy array of shape (n_ex, N)
The VAE reconstruction of the images.
t_mean: numpy array of shape (n_ex, T)
Mean of the variational distribution :math:`q(t | x)`.
t_log_var: numpy array of shape (n_ex, T)
Log of the variance vector of the variational distribution
:math:`q(t | x)`.
Returns
-------
loss : float
The VLB, averaged across the batch
"""
# prevent nan on log(0)
eps = np.finfo(float).eps
y_pred = np.clip(y_pred, eps, 1 - eps)
# reconstruction loss: binary cross-entropy
rec_loss = -np.sum(y * np.log(y_pred) + (1 - y) * np.log(1 - y_pred), axis=1)
# KL divergence between the variational distribution q and the prior p,
# a unit gaussian
kl_loss = -0.5 * np.sum(1 + t_log_var - t_mean ** 2 - np.exp(t_log_var), axis=1)
loss = np.mean(kl_loss + rec_loss)
return loss
@staticmethod
def grad(y, y_pred, t_mean, t_log_var):
"""
Compute the gradient of the VLB with regard to the network parameters.
Parameters
----------
y : numpy array of shape (n_ex, N)
The original images.
y_pred : numpy array of shape (n_ex, N)
The VAE reconstruction of the images.
t_mean: numpy array of shape (n_ex, T)
Mean of the variational distribution :math:`q(t | x)`.
t_log_var: numpy array of shape (n_ex, T)
Log of the variance vector of the variational distribution
:math:`q(t | x)`.
Returns
-------
dY_pred : numpy array of shape (n_ex, N)
The gradient of the VLB with regard to `y_pred`.
dLogVar : numpy array of shape (n_ex, T)
The gradient of the VLB with regard to `t_log_var`.
dMean : numpy array of shape (n_ex, T)
The gradient of the VLB with regard to `t_mean`.
"""
N = y.shape[0]
eps = np.finfo(float).eps
y_pred = np.clip(y_pred, eps, 1 - eps)
dY_pred = -y / (N * y_pred) - (y - 1) / (N - N * y_pred)
dLogVar = (np.exp(t_log_var) - 1) / (2 * N)
dMean = t_mean / N
return dY_pred, dLogVar, dMean
class WGAN_GPLoss(ObjectiveBase):
"""
The loss function for a Wasserstein GAN with gradient penalty.
Assuming an optimal critic, minimizing this quantity wrt. the generator
parameters corresponds to minimizing the Wasserstein-1 (earth-mover)
distance between the fake and real data distributions.
The formula for the WGAN-GP loss is::
WGANLoss = sum([p(x) * D(x) for x in X_real]) -
sum([p(x_) * D(x_) for x_ in X_fake])
WGANLossGP = WGANLoss + lambda * (||∇_Xi D(Xi)|| - 1)^2
where::
X_fake ~ G(z) for z ~ N(0, 1)
Xi ~ alpha * X_real + (1 - alpha) * X_fake
alpha ~ Uniform(0, 1, dim=X_real.shape[0])
References
----------
.. [1] Gulrajani et al. (2017) "Improved training of Wasserstein GANs"
Advances in Neural Information Processing Systems, 31, 5769-5779.
https://arxiv.org/pdf/1704.00028.pdf
.. [2] Goodfellow et al. (2014) "Generative adversarial nets" Advances in
Neural Information Processing Systems, 27, 2672-2680.
https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
"""
def __init__(self, lambda_=10):
"""
The WGAN-GP value function.
Parameters
----------
lambda_ : float (default: 10)
The gradient penalty coefficient
"""
self.lambda_ = lambda_
super().__init__()
def __call__(self, Y_fake, module, Y_real=None, gradInterp=None):
"""
Computes the generator and critic loss using the WGAN-GP value
function.
Parameters
----------
Y_fake : numpy array of shape (n_ex,)
The output of the critic for `X_fake`.
module : {'C' or 'G'}
Whether to calculate the loss for the critic ('C') or the generator
('G'). If calculating loss for the critic, `Y_real` and
`gradInterp` must not be `None`.
Y_real : numpy array of shape (n_ex,) or None
The output of the critic for `X_real`. Default is None.
gradInterp : numpy array of shape (n_ex, n_feats) or None
The gradient of the critic output for `X_interp` wrt. `X_interp`.
Default is None.
Returns
-------
loss : float
Depending on the setting for `module`, either the critic or
generator loss, averaged over examples in the minibatch.
"""
return self.loss(Y_fake, module, Y_real=Y_real, gradInterp=gradInterp)
def __str__(self):
return "WGANLossGP(lambda_={})".format(self.lambda_)
def loss(self, Y_fake, module, Y_real=None, gradInterp=None):
"""
Computes the generator and critic loss using the WGAN-GP value
function.
Parameters
----------
Y_fake : numpy array of shape (n_ex,)
The output of the critic for `X_fake`.
module : {'C' or 'G'}
Whether to calculate the loss for the critic ('C') or the generator
('G'). If calculating loss for the critic, `Y_real` and
`gradInterp` must not be `None`.
Y_real : numpy array of shape (n_ex,) or None
The output of the critic for `X_real`. Default is None.
gradInterp : numpy array of shape (n_ex, n_feats) or None
The gradient of the critic output for `X_interp` wrt. `X_interp`.
Default is None.
Returns
-------
loss : float
Depending on the setting for `module`, either the critic or
generator loss, averaged over examples in the minibatch.
"""
# calc critic loss including gradient penalty
if module == "C":
X_interp_norm = np.linalg.norm(gradInterp, axis=1, keepdims=True)
gradient_penalty = (X_interp_norm - 1) ** 2
loss = (
Y_fake.mean() - Y_real.mean() + self.lambda_ * gradient_penalty.mean()
)
# calc generator loss
elif module == "G":
loss = -Y_fake.mean()
else:
raise ValueError("Unrecognized module: {}".format(module))
return loss
def grad(self, Y_fake, module, Y_real=None, gradInterp=None):
"""
Computes the gradient of the generator or critic loss with regard to
its inputs.
Parameters
----------
Y_fake : numpy array of shape (n_ex,)
The output of the critic for `X_fake`.
module : {'C' or 'G'}
Whether to calculate the gradient for the critic loss ('C') or the
generator loss ('G'). If calculating grads for the critic, `Y_real`
and `gradInterp` must not be None.
Y_real : numpy array of shape (n_ex,) or None
The output of the critic for `X_real`. Default is None.
gradInterp : numpy array of shape (n_ex, n_feats) or None
The gradient of the critic output on `X_interp` wrt. `X_interp`.
Default is None.
Returns
-------
grads : tuple
If `module` == 'C', returns a 3-tuple containing the gradient of
the critic loss with regard to (`Y_fake`, `Y_real`, `gradInterp`).
If `module` == 'G', returns the gradient of the generator with
regard to `Y_fake`.
"""
eps = np.finfo(float).eps
n_ex_fake = Y_fake.shape[0]
# calc gradient of the critic loss
if module == "C":
n_ex_real = Y_real.shape[0]
dY_fake = -1 / n_ex_fake * np.ones_like(Y_fake)
dY_real = 1 / n_ex_real * np.ones_like(Y_real)
# differentiate through gradient penalty
X_interp_norm = np.linalg.norm(gradInterp, axis=1, keepdims=True) + eps
dGradInterp = (
(2 / n_ex_fake)
* self.lambda_
* (X_interp_norm - 1)
* (gradInterp / X_interp_norm)
)
grad = (dY_fake, dY_real, dGradInterp)
# calc gradient of the generator loss
elif module == "G":
grad = -1 / n_ex_fake * np.ones_like(Y_fake)
else:
raise ValueError("Unrecognized module: {}".format(module))
return grad
class NCELoss(ObjectiveBase):
"""
Noise contrastive estimation is a candidate sampling method often
used to reduce the computational challenge of training a softmax
layer on problems with a large number of output classes. It proceeds by
training a logistic regression model to discriminate between samples
from the true data distribution and samples from an artificial noise
distribution.
It can be shown that as the ratio of negative samples to data samples
goes to infinity, the gradient of the NCE loss converges to the
original softmax gradient.
For input data `X`, target labels `targets`, loss parameters `W` and
`b`, and noise samples `noise` sampled from the noise distribution `Q`,
the NCE loss is
NCE(X, targets) = BxE(y_data, y_hat_data) + BxE(y_noise, y_hat_noise)
where
BxE(a, b) = -sum_i b[i] * log(a[i]) + (1 - b[i]) * log(1 - a[i])
is the binary cross entropy between binary labels `b` and label
probabilities `a`, and
y_hat_data = sigmoid(W[data] @ X + b[data] - log Q(data))
y_hat_noise = sigmoid(W[noise] @ X + b[noise] - log Q(noise))
are the predictions of the NCE logistic model for the data and noise
samples, respectively.
References
----------
.. [1] Gutmann & Hyvarinen (2010). Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models. AISTATS 13.
.. [2] Minh & Teh (2012). A fast and simple algorithm for training neural
probabilistic language models. ICML 29.
"""
def __init__(
self,
n_classes,
noise_sampler,
num_negative_samples,
optimizer=None,
init="glorot_uniform",
subtract_log_label_prob=True,
):
"""
A noise contrastive estimation (NCE) loss function.
Parameters
----------
n_classes : int
The total number of output classes in the model.
noise_sampler : `numpy_ml.utils.data_structures.DiscreteSampler` instance
The negative sampler. Defines a distribution over all classes in
the dataset.
num_negative_samples : int
The number of negative samples to draw for each target / batch of
targets.
init : {'glorot_normal', 'glorot_uniform', 'he_normal', 'he_uniform'}
The weight initialization strategy. Default is 'glorot_uniform'.
optimizer : str, `OptimizerBase` instance, or None
The optimization strategy to use when performing gradient updates
within the `update` method. If `None`, use the `SGD` optimizer with
default parameters. Default is None.
subtract_log_label_prob : bool
Whether to subtract the log of the probability of each label under
the noise distribution from its respective logit. Set to False for
negative sampling, True for NCE. Default is True.
Attributes
----------
gradients : dict
parameters : dict
hyperparameters : dict
derived_variables : dict
"""
super().__init__()
self.init = init
self.n_in = None
self.trainable = True
self.n_classes = n_classes
self.noise_sampler = noise_sampler
self.num_negative_samples = num_negative_samples
self.act_fn = ActivationInitializer("Sigmoid")()
self.optimizer = OptimizerInitializer(optimizer)()
self.subtract_log_label_prob = subtract_log_label_prob
self.is_initialized = False
def _init_params(self):
init_weights = WeightInitializer(str(self.act_fn), mode=self.init)
self.X = []
b = np.zeros((1, self.n_classes))
W = init_weights((self.n_classes, self.n_in))
self.parameters = {"W": W, "b": b}
self.gradients = {"W": np.zeros_like(W), "b": np.zeros_like(b)}
self.derived_variables = {
"y_pred": [],
"target": [],
"true_w": [],
"true_b": [],
"sampled_b": [],
"sampled_w": [],
"out_labels": [],
"target_logits": [],
"noise_samples": [],
"noise_logits": [],
}
self.is_initialized = True
@property
def hyperparameters(self):
return {
"id": "NCELoss",
"n_in": self.n_in,
"init": self.init,
"n_classes": self.n_classes,
"noise_sampler": self.noise_sampler,
"num_negative_samples": self.num_negative_samples,
"subtract_log_label_prob": self.subtract_log_label_prob,
"optimizer": {
"cache": self.optimizer.cache,
"hyperparameters": self.optimizer.hyperparameters,
},
}
def __call__(self, X, target, neg_samples=None, retain_derived=True):
return self.loss(X, target, neg_samples, retain_derived)
def __str__(self):
keys = [
"{}={}".format(k, v)
for k, v in self.hyperparameters.items()
if k not in ["id", "optimizer"]
] + ["optimizer={}".format(self.optimizer)]
return "NCELoss({})".format(", ".join(keys))
def freeze(self):
self.trainable = False
def unfreeze(self):
self.trainable = True
def flush_gradients(self):
assert self.trainable, "NCELoss is frozen"
self.X = []
for k, v in self.derived_variables.items():
self.derived_variables[k] = []
for k, v in self.gradients.items():
self.gradients[k] = np.zeros_like(v)
def update(self, cur_loss=None):
assert self.trainable, "NCELoss is frozen"
self.optimizer.step()
for k, v in self.gradients.items():
if k in self.parameters:
self.parameters[k] = self.optimizer(self.parameters[k], v, k, cur_loss)
self.flush_gradients()
def loss(self, X, target, neg_samples=None, retain_derived=True):
"""
Compute the NCE loss for a collection of inputs and associated targets.
Parameters
----------
X : numpy array of shape (n_ex, n_c, n_in)
Layer input. A minibatch of `n_ex` examples, where each example is
an `n_c` x `n_in` matrix (e.g., the matrix of `n_c` context
embeddings, each of dimensionality `n_in`, for a CBOW model)
target : numpy array of shape (n_ex,)
Integer indices of the target class(es) for each example in the
minibatch (e.g., the target word id for an example in a CBOW model)
neg_samples : numpy array of shape (`num_negative_samples`,) or None
An optional array of negative samples to use during the loss
calculation. These will be used instead of samples draw from
``self.noise_sampler``. Default is None.
retain_derived : bool
Whether to retain the variables calculated during the forward pass
for use later during backprop. If `False`, this suggests the layer
will not be expected to backprop through with regard to this input.
Default is True.
Returns
-------
loss : float
The NCE loss summed over the minibatch and samples
y_pred : numpy array of shape (n_ex, n_c)
The network predictions for the conditional probability of each
target given each context: entry (i, j) gives the predicted
probability of target i under context vector j.
Notes
-----
For input data `X`, target labels `targets`, loss parameters `W` and
`b`, and noise samples `noise` sampled from the noise distribution `Q`,
the NCE loss is
NCE(X, targets) = BxE(y_data, y_hat_data) + BxE(y_noise, y_hat_noise)
where
BxE(a, b) = -sum_i b[i] * log(a[i]) + (1 - b[i]) * log(1 - a[i])
is the binary cross entropy between binary labels `b` and label
probabilities `a`, and
y_hat_data = sigmoid(W[data] @ X + b[data] - log Q(data))
y_hat_noise = sigmoid(W[noise] @ X + b[noise] - log Q(noise))
are the predictions of the NCE logistic model for the data and noise
samples, respectively.
"""
if not self.is_initialized:
self.n_in = X.shape[-1]
self._init_params()
loss, Z_target, Z_neg, y_pred, y_true, noise_samples = self._loss(
X, target, neg_samples
)
# cache derived variables for gradient calculation
if retain_derived:
self.X.append(X)
self.derived_variables["y_pred"].append(y_pred)
self.derived_variables["target"].append(target)
self.derived_variables["out_labels"].append(y_true)
self.derived_variables["target_logits"].append(Z_target)
self.derived_variables["noise_samples"].append(noise_samples)
self.derived_variables["noise_logits"].append(Z_neg)
return loss, np.squeeze(y_pred[..., :1], -1)
def _loss(self, X, target, neg_samples):
"""Actual computation of NCE loss"""
fstr = "X must have shape (n_ex, n_c, n_in), but got {} dims instead"
assert X.ndim == 3, fstr.format(X.ndim)
W = self.parameters["W"]
b = self.parameters["b"]
# sample negative samples from the noise distribution
if neg_samples is None:
neg_samples = self.noise_sampler(self.num_negative_samples)
assert len(neg_samples) == self.num_negative_samples
# get the probability of the negative sample class and the target
# class under the noise distribution
p_neg_samples = self.noise_sampler.probs[neg_samples]
p_target = np.atleast_2d(self.noise_sampler.probs[target])
# save the noise samples for debugging
noise_samples = (neg_samples, p_target, p_neg_samples)
# compute the logit for the negative samples and target
Z_target = X @ W[target].T + b[0, target]
Z_neg = X @ W[neg_samples].T + b[0, neg_samples]
# subtract the log probability of each label under the noise dist
if self.subtract_log_label_prob:
n, m = Z_target.shape[0], Z_neg.shape[0]
Z_target[range(n), ...] -= np.log(p_target)
Z_neg[range(m), ...] -= np.log(p_neg_samples)
# only retain the probability of the target under its associated
# minibatch example
aa, _, cc = Z_target.shape
Z_target = Z_target[range(aa), :, range(cc)][..., None]
# p_target = (n_ex, n_c, 1)
# p_neg = (n_ex, n_c, n_samples)
pred_p_target = self.act_fn(Z_target)
pred_p_neg = self.act_fn(Z_neg)
# if we're in evaluation mode, ignore the negative samples - just
# return the binary cross entropy on the targets
y_pred = pred_p_target
if self.trainable:
# (n_ex, n_c, 1 + n_samples) (target is first column)
y_pred = np.concatenate((y_pred, pred_p_neg), axis=-1)
n_targets = 1
y_true = np.zeros_like(y_pred)
y_true[..., :n_targets] = 1
# binary cross entropy
eps = np.finfo(float).eps
np.clip(y_pred, eps, 1 - eps, y_pred)
loss = -np.sum(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred))
return loss, Z_target, Z_neg, y_pred, y_true, noise_samples
def grad(self, retain_grads=True, update_params=True):
"""
Compute the gradient of the NCE loss with regard to the inputs,
weights, and biases.
Parameters
----------
retain_grads : bool
Whether to include the intermediate parameter gradients computed
during the backward pass in the final parameter update. Default is
True.
update_params : bool
Whether to perform a single step of gradient descent on the layer
weights and bias using the calculated gradients. If `retain_grads`
is False, this option is ignored and the parameter gradients are
not updated. Default is True.
Returns
-------
dLdX : list of arrays or numpy array of shape (n_ex, n_in)
The gradient of the loss with regard to the layer input(s) `X`.
"""
assert self.trainable, "NCE loss is frozen"
dX = []
for input_idx, x in enumerate(self.X):
dx, dw, db = self._grad(x, input_idx)
dX.append(dx)
if retain_grads:
self.gradients["W"] += dw
self.gradients["b"] += db
dX = dX[0] if len(self.X) == 1 else dX
if retain_grads and update_params:
self.update()
return dX
def _grad(self, X, input_idx):
"""Actual computation of gradient wrt. loss weights + input"""
W, b = self.parameters["W"], self.parameters["b"]
y_pred = self.derived_variables["y_pred"][input_idx]
target = self.derived_variables["target"][input_idx]
y_true = self.derived_variables["out_labels"][input_idx]
Z_neg = self.derived_variables["noise_logits"][input_idx]
Z_target = self.derived_variables["target_logits"][input_idx]
neg_samples = self.derived_variables["noise_samples"][input_idx][0]
# the number of target classes per minibatch example
n_targets = 1
# calculate the grad of the binary cross entropy wrt. the network
# predictions
preds, classes = y_pred.flatten(), y_true.flatten()
dLdp_real = ((1 - classes) / (1 - preds)) - (classes / preds)
dLdp_real = dLdp_real.reshape(*y_pred.shape)
# partition the gradients into target and negative sample portions
dLdy_pred_target = dLdp_real[..., :n_targets]
dLdy_pred_neg = dLdp_real[..., n_targets:]
# compute gradients of the loss wrt the data and noise logits
dLdZ_target = dLdy_pred_target * self.act_fn.grad(Z_target)
dLdZ_neg = dLdy_pred_neg * self.act_fn.grad(Z_neg)
# compute param gradients on target + negative samples
dB_neg = dLdZ_neg.sum(axis=(0, 1))
dB_target = dLdZ_target.sum(axis=(1, 2))
dW_neg = (dLdZ_neg.transpose(0, 2, 1) @ X).sum(axis=0)
dW_target = (dLdZ_target.transpose(0, 2, 1) @ X).sum(axis=1)
# TODO: can this be done with np.einsum instead?
dX_target = np.vstack(
[dLdZ_target[[ix]] @ W[[t]] for ix, t in enumerate(target)]
)
dX_neg = dLdZ_neg @ W[neg_samples]
hits = list(set(target).intersection(set(neg_samples)))
hit_ixs = [np.where(target == h)[0] for h in hits]
# adjust param gradients if there's an accidental hit
if len(hits) != 0:
hit_ixs = np.concatenate(hit_ixs)
target = np.delete(target, hit_ixs)
dB_target = np.delete(dB_target, hit_ixs)
dW_target = np.delete(dW_target, hit_ixs, 0)
dX = dX_target + dX_neg
# use np.add.at to ensure that repeated indices in the target (or
# possibly in neg_samples if sampling is done with replacement) are
# properly accounted for
dB = np.zeros_like(b).flatten()
np.add.at(dB, target, dB_target)
np.add.at(dB, neg_samples, dB_neg)
dB = dB.reshape(*b.shape)
dW = np.zeros_like(W)
np.add.at(dW, target, dW_target)
np.add.at(dW, neg_samples, dW_neg)
return dX, dW, dB