forked from dereklstinson/convnetgo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathactivation.go
252 lines (228 loc) · 6.13 KB
/
activation.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
package convnetgo
import (
"errors"
"sync"
)
//Relu holds the methods to do Relu activation
type Relu struct {
ceiling float32
}
//CreateRelu will create the relu function if ceiling <= 0 then
//there won't be a ceiling
func CreateRelu(ceiling float32) (l *Relu) {
l = new(Relu)
l.ceiling = ceiling
return l
}
//Set sets the ceiling
func (r *Relu) Set(ceiling float32) {
r.ceiling = ceiling
}
//Get gets the ceiling
func (r *Relu) Get() (ceiling float32) {
ceiling = r.ceiling
return ceiling
}
//Forward does the forward operation
//alpha and beta have no function right now
func (r *Relu) Forward(x, y *Tensor, alpha, beta float32) (err error) {
if findvolume(x.dims) != findvolume(y.dims) {
return errors.New("(r *Relu)Forward findvolume(x.dims)!=findvolume(y.dims)")
}
if r.ceiling <= 0 {
nbatches := x.dims[0]
batchstride := x.stride[0]
nbatchelements := findvolume(x.dims[1:])
var wg sync.WaitGroup
for i := 0; i < nbatches; i++ {
wg.Add(1)
batchoffset := i * batchstride
go func(batchoffset, nbatchelements int) {
for j := 0; j < nbatchelements; j++ {
if x.f32data[batchoffset+j] < 0 {
y.f32data[batchoffset+j] = 0
} else {
y.f32data[batchoffset+j] = x.f32data[batchoffset+j]
}
}
wg.Done()
}(batchoffset, nbatchelements)
// for i := range y.f32data {
// if x.f32data[i] < 0 {
// y.f32data[i] = 0
// } else {
// y.f32data[i] = x.f32data[i]
// }
// }
}
wg.Wait()
return nil
}
nbatches := x.dims[0]
batchstride := x.stride[0]
nbatchelements := findvolume(x.dims[1:])
var wg sync.WaitGroup
for i := 0; i < nbatches; i++ {
wg.Add(1)
batchoffset := i * batchstride
go func(batchoffset, nbatchelements int) {
for j := 0; j < nbatchelements; j++ {
if x.f32data[batchoffset+j] <= 0 {
y.f32data[batchoffset+j] = 0
} else if x.f32data[batchoffset+j] > r.ceiling {
y.f32data[batchoffset+j] = r.ceiling
} else {
y.f32data[batchoffset+j] = x.f32data[batchoffset+j]
}
}
wg.Done()
}(batchoffset, nbatchelements)
}
wg.Wait()
return nil
}
// for i := range y.f32data {
// if x.f32data[i] < 0 {
// y.f32data[i] = 0
// } else if x.f32data[i] > r.ceiling {
// y.f32data[i] = r.ceiling
// } else {
// y.f32data[i] = x.f32data[i]
// }
// }
//Backward does the Backward operation
//alpha and beta have no function right now
func (r *Relu) Backward(x, dx, dy *Tensor, alpha, beta float32) (err error) {
if findvolume(dx.dims) != findvolume(dy.dims) || findvolume(dx.dims) != findvolume(x.dims) {
return errors.New("(r *Relu)Backward findvolume(dx.dims) != findvolume(dy.dims) ||findvolume(dx.dims)!=findvolume(x.dims)")
}
nbatches := x.dims[0]
batchstride := x.stride[0]
nbatchelements := findvolume(x.dims[1:])
var wg sync.WaitGroup
for i := 0; i < nbatches; i++ {
wg.Add(1)
batchoffset := i * batchstride
go func(batchoffset, nbatchelements int) {
for j := 0; j < nbatchelements; j++ {
if x.f32data[batchoffset+j] <= 0 {
dx.f32data[batchoffset+j] = 0
} else {
dx.f32data[batchoffset+j] = dy.f32data[batchoffset+j]
}
}
wg.Done()
}(batchoffset, nbatchelements)
}
wg.Wait()
return nil
// for i := range dy.f32data {
// if x.f32data[i] < 0 {
// dx.f32data[i] = 0
// } else {
// dx.f32data[i] = dy.f32data[i]
// }
// }
// return nil
}
//LeakyRelu is a struct that holds the neg and pos coef
type LeakyRelu struct {
negcoef, poscoef float32
}
//CreateLeakyRelu creates a leaky relu
func CreateLeakyRelu(negcoef, poscoef float32) (l *LeakyRelu, err error) {
if negcoef == poscoef {
return nil, errors.New("CreateLeakyRelu() negcoef==poscoef")
}
l = new(LeakyRelu)
l.negcoef = negcoef
l.poscoef = poscoef
return l, nil
}
//Set sets the coefs
func (l *LeakyRelu) Set(negcoef, poscoef float32) (err error) {
if negcoef == poscoef {
return errors.New("CreateLeakyRelu() negcoef==poscoef")
}
l.poscoef = poscoef
l.negcoef = negcoef
return nil
}
//Get gets the coefs
func (l *LeakyRelu) Get() (negcoef, poscoef float32) {
poscoef = l.poscoef
negcoef = l.negcoef
return negcoef, poscoef
}
//Forward does the leaky relu activation
//alpha and beta have no function right now
func (l *LeakyRelu) Forward(x, y *Tensor, alpha, beta float32) (err error) {
if len(x.f32data) != len(y.f32data) {
return errors.New("LeakyReluForward() Volume of x != Volume of y")
}
nbatches := x.dims[0]
batchstride := x.stride[0]
nbatchelements := findvolume(x.dims[1:])
var wg sync.WaitGroup
for i := 0; i < nbatches; i++ {
wg.Add(1)
batchoffset := i * batchstride
go func(batchoffset, nbatchelements int) {
for j := 0; j < nbatchelements; j++ {
if x.f32data[batchoffset+j] < 0 {
y.f32data[batchoffset+j] = x.f32data[batchoffset+j] * l.negcoef
} else {
y.f32data[batchoffset+j] = x.f32data[batchoffset+j] * l.poscoef
}
}
wg.Done()
}(batchoffset, nbatchelements)
}
wg.Wait()
return nil
// for i := range x.f32data {
// if x.f32data[i] < 0 {
// y.f32data[i] = x.f32data[i] * l.negcoef
// } else {
// y.f32data[i] = x.f32data[i] * l.poscoef
// }
//
// }
// return nil
}
//Backward does the backward relu activation
//alpha and beta have no function right now
func (l *LeakyRelu) Backward(x, dx, dy *Tensor, alpha, beta float32) (err error) {
if len(x.f32data) != len(dy.f32data) || len(x.f32data) != len(dx.f32data) {
return errors.New("LeakyReluForward() Volume of x != Volume of dy || Volume of x != Volume of dx")
}
nbatches := x.dims[0]
batchstride := x.stride[0]
nbatchelements := findvolume(x.dims[1:])
var wg sync.WaitGroup
for i := 0; i < nbatches; i++ {
wg.Add(1)
batchoffset := i * batchstride
go func(batchoffset, nbatchelements int) {
for j := 0; j < nbatchelements; j++ {
if x.f32data[batchoffset+j] < 0 {
dx.f32data[batchoffset+j] = dy.f32data[batchoffset+j] * l.negcoef
} else {
dx.f32data[batchoffset+j] = dy.f32data[batchoffset+j] * l.poscoef
}
}
wg.Done()
}(batchoffset, nbatchelements)
}
wg.Wait()
return nil
// for i := range x.f32data {
// if x.f32data[i] < 0 {
// dx.f32data[i] = dy.f32data[i] * l.negcoef
// } else {
// dx.f32data[i] = dy.f32data[i] * l.poscoef
// }
//
// }
// return nil
}