Skip to content

Stanford Project: Artificial Intelligence is changing virtually every aspect of our lives. Today’s algorithms accomplish tasks that until recently only expert humans could perform. As it relates to finance, this is an exciting time to adopt a disruptive technology that will transform how everyone invests for generations. Models that explain the …

Notifications You must be signed in to change notification settings

duemig/Stanford-Project-Predicting-stock-prices-using-a-LSTM-Network

Repository files navigation

Stanford Project: Predicting stock prices using a LSTM-Network

Predicting stock prices using a LSTM-Network

Introduction: Artificial Intelligence is changing virtually every aspect of our lives. Today’s algorithms accomplish tasks that until recently only expert humans could perform. As it relates to finance, this is an exciting time to adopt a disruptive technology that will transform how investment decisions are made on a broad scale. Models that explain the returns of individual stocks generally use company and stock characteristics, e.g., the market prices of financial instruments and companies’ accounting data. These characteristics can also be used to predict expected stock returns out-of-sample. Most studies use simple linear models to form these predictions. An increasing body of academic literature documents that more sophisticated tools from the Machine Learning (ML) and Deep Learning (DL) repertoire, which allow for nonlinear predictor interactions, can improve the stock return forecasts. The main goal of this project is to investigate whether modern DL techniques can be utilized to more efficiently predict the movements of the stock market. Specifically, we train LSTM-networks with time series price-volume data and compare their out-of-sample return predictability with the performance of simple logistic regressions (our baseline models).

Methods: • Long short-term memory (LSTM) recurrent neural network

Programming language: Python

About

Stanford Project: Artificial Intelligence is changing virtually every aspect of our lives. Today’s algorithms accomplish tasks that until recently only expert humans could perform. As it relates to finance, this is an exciting time to adopt a disruptive technology that will transform how everyone invests for generations. Models that explain the …

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published