-
Notifications
You must be signed in to change notification settings - Fork 50
/
pre3d.js
1095 lines (967 loc) · 35.5 KB
/
pre3d.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Pre3d, a JavaScript software 3d renderer.
// (c) Dean McNamee <dean@gmail.com>, Dec 2008.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//
// Here are a few notes about what was involved in making this code fast.
//
// - Being careful about painting The engine works in quads, 4 vertices per
// face, no restriction on being coplanar, or on triangles. If we were to
// work only in triangles, we would have to do twice as many paints and
// longer sorts, since we would double the polygon count.
//
// Depending on the underlying rasterization system, strokes can be pretty
// slow, slower than fills. This is why overdraw is not a stroke.
//
// - Objects over Arrays
// Because Arrays always go through the key lookup path (a[0] is a['0']), and
// there is no way to do a named lookup (like a.0), it is faster to use
// objects than arrays for fixed size storage. You can think of this like
// the difference between a List and Tuple in languages like python. Modern
// engines can do a better job accessing named properties, so we represented
// our data as objects. Profiling showed a huge difference, keyed lookup
// used to be the most expensive operation in profiling, taking around ~5%.
//
// There is also a performance (and convenience) balance betweening object
// literals and constructor functions. Small and obvious structures like
// points have no constructor, and are expected to be created as object
// literals. Objects with many properties are created through a constructor.
//
// - Object creation / GC pressure
// One of the trickiest things about a language like JavaScript is avoiding
// long GC pauses and object churn. You can do things like cache and reuse
// objects, avoid creating extra intermediate objects, etc. Right now there
// has been a little bit of work done here, but there is more to be done.
//
// - Flattening
// It is very tempting as a programmer to write generic routines, for example
// math functions that could work on either 2d or 3d. This is convenient,
// but the caller already knows which they should be using, and the extra
// overhead for generic routines turned out to be substantial. Unrolling
// specialized code makes a big difference, for example an early profile:
// before: 2.5% 2.5% Function: subPoints // old general 2d and 3d
// after: 0.3% 0.3% Function: subPoints2d // fast case 2d
// after: 0.2% 0.2% Function: subPoints3d // fast case 3d
//
// - Don't use new if you don't have to
// Some profiles showed that new (JSConstructCall) at about ~1%. These were
// for code like new Array(size); Specifically for the Array constructor, it
// ignores the object created and passed in via new, and returns a different
// object anyway. This means 'new Array()' and 'Array()' should be
// interchangable, and this allows you to avoid the overhead for new.
//
// - Local variable caching
// In most cases it should be faster to look something up in the local frame
// than to evaluate the expression / lookup more than once. In these cases
// I generally try to cache the variable in a local var.
//
// You might notice that in a few places there is code like:
// Blah.protype.someMethod = function someMethod() { }
// someMethod is duplicated on the function so that the name of the function
// is not anonymous, and it can be easier to debug and profile.
var Pre3d = (function() {
// 2D and 3D point / vector / matrix math. Points and vectors are expected
// to have an x, y and z (if 3d) property. It is important to be consistent
// when creating these objects to allow the JavaScript engine to properly
// optimize the property access. Create this as object literals, ex:
// var my_2d_point_or_vector = {x: 0, y: 0};
// var my_3d_point_or_vector = {x: 0, y: 0, z: 0};
//
// There is one convention that might be confusing. In order to avoid extra
// object creations, there are some "IP" versions of these functions. This
// stands for "in place", and they write the result to one of the arguments.
function crossProduct(a, b) {
// a1b2 - a2b1, a2b0 - a0b2, a0b1 - a1b0
return {
x: a.y * b.z - a.z * b.y,
y: a.z * b.x - a.x * b.z,
z: a.x * b.y - a.y * b.x
};
}
function dotProduct2d(a, b) {
return a.x * b.x + a.y * b.y;
}
function dotProduct3d(a, b) {
return a.x * b.x + a.y * b.y + a.z * b.z;
}
// a - b
function subPoints2d(a, b) {
return {x: a.x - b.x, y: a.y - b.y};
}
function subPoints3d(a, b) {
return {x: a.x - b.x, y: a.y - b.y, z: a.z - b.z};
}
// c = a - b
function subPoints2dIP(c, a, b) {
c.x = a.x - b.x;
c.y = a.y - b.y;
return c;
}
function subPoints3dIP(c, a, b) {
c.x = a.x - b.x;
c.y = a.y - b.y;
c.z = a.z - b.z;
return c;
}
// a + b
function addPoints2d(a, b) {
return {x: a.x + b.x, y: a.y + b.y};
}
function addPoints3d(a, b) {
return {x: a.x + b.x, y: a.y + b.y, z: a.z + b.z};
}
// c = a + b
function addPoints2dIP(c, a, b) {
c.x = a.x + b.x;
c.y = a.y + b.y;
return c;
}
function addPoints3dIP(c, a, b) {
c.x = a.x + b.x;
c.y = a.y + b.y;
c.z = a.z + b.z;
return c;
}
// a * s
function mulPoint2d(a, s) {
return {x: a.x * s, y: a.y * s};
}
function mulPoint3d(a, s) {
return {x: a.x * s, y: a.y * s, z: a.z * s};
}
// |a|
function vecMag2d(a) {
var ax = a.x, ay = a.y;
return Math.sqrt(ax * ax + ay * ay);
}
function vecMag3d(a) {
var ax = a.x, ay = a.y, az = a.z;
return Math.sqrt(ax * ax + ay * ay + az * az);
}
// a / |a|
function unitVector2d(a) {
return mulPoint2d(a, 1 / vecMag2d(a));
}
function unitVector3d(a) {
return mulPoint3d(a, 1 / vecMag3d(a));
}
// Linear interpolation on the line along points (0, |a|) and (1, |b|). The
// position |d| is the x coordinate, where 0 is |a| and 1 is |b|.
function linearInterpolate(a, b, d) {
return (b-a)*d + a;
}
// Linear interpolation on the line along points |a| and |b|. |d| is the
// position, where 0 is |a| and 1 is |b|.
function linearInterpolatePoints3d(a, b, d) {
return {
x: (b.x-a.x)*d + a.x,
y: (b.y-a.y)*d + a.y,
z: (b.z-a.z)*d + a.z
}
}
// This represents an affine 4x4 matrix, stored as a 3x4 matrix with the last
// row implied as [0, 0, 0, 1]. This is to avoid generally unneeded work,
// skipping part of the homogeneous coordinates calculations and the
// homogeneous divide. Unlike points, we use a constructor function instead
// of object literals to ensure map sharing. The matrix looks like:
// e0 e1 e2 e3
// e4 e5 e6 e7
// e8 e9 e10 e11
// 0 0 0 1
function AffineMatrix(e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11) {
this.e0 = e0;
this.e1 = e1;
this.e2 = e2;
this.e3 = e3;
this.e4 = e4;
this.e5 = e5;
this.e6 = e6;
this.e7 = e7;
this.e8 = e8;
this.e9 = e9;
this.e10 = e10;
this.e11 = e11;
};
// Matrix multiplication of AffineMatrix |a| x |b|. This is unrolled,
// and includes the calculations with the implied last row.
function multiplyAffine(a, b) {
// Avoid repeated property lookups by accessing into the local frame.
var a0 = a.e0, a1 = a.e1, a2 = a.e2, a3 = a.e3, a4 = a.e4, a5 = a.e5;
var a6 = a.e6, a7 = a.e7, a8 = a.e8, a9 = a.e9, a10 = a.e10, a11 = a.e11;
var b0 = b.e0, b1 = b.e1, b2 = b.e2, b3 = b.e3, b4 = b.e4, b5 = b.e5;
var b6 = b.e6, b7 = b.e7, b8 = b.e8, b9 = b.e9, b10 = b.e10, b11 = b.e11;
return new AffineMatrix(
a0 * b0 + a1 * b4 + a2 * b8,
a0 * b1 + a1 * b5 + a2 * b9,
a0 * b2 + a1 * b6 + a2 * b10,
a0 * b3 + a1 * b7 + a2 * b11 + a3,
a4 * b0 + a5 * b4 + a6 * b8,
a4 * b1 + a5 * b5 + a6 * b9,
a4 * b2 + a5 * b6 + a6 * b10,
a4 * b3 + a5 * b7 + a6 * b11 + a7,
a8 * b0 + a9 * b4 + a10 * b8,
a8 * b1 + a9 * b5 + a10 * b9,
a8 * b2 + a9 * b6 + a10 * b10,
a8 * b3 + a9 * b7 + a10 * b11 + a11
);
}
function makeIdentityAffine() {
return new AffineMatrix(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0
);
}
// http://en.wikipedia.org/wiki/Rotation_matrix
function makeRotateAffineX(theta) {
var s = Math.sin(theta);
var c = Math.cos(theta);
return new AffineMatrix(
1, 0, 0, 0,
0, c, -s, 0,
0, s, c, 0
);
}
function makeRotateAffineY(theta) {
var s = Math.sin(theta);
var c = Math.cos(theta);
return new AffineMatrix(
c, 0, s, 0,
0, 1, 0, 0,
-s, 0, c, 0
);
}
function makeRotateAffineZ(theta) {
var s = Math.sin(theta);
var c = Math.cos(theta);
return new AffineMatrix(
c, -s, 0, 0,
s, c, 0, 0,
0, 0, 1, 0
);
}
function makeTranslateAffine(dx, dy, dz) {
return new AffineMatrix(
1, 0, 0, dx,
0, 1, 0, dy,
0, 0, 1, dz
);
}
function makeScaleAffine(sx, sy, sz) {
return new AffineMatrix(
sx, 0, 0, 0,
0, sy, 0, 0,
0, 0, sz, 0
);
}
// Return a copy of the affine matrix |m|.
function dupAffine(m) {
return new AffineMatrix(
m.e0, m.e1, m.e2, m.e3,
m.e4, m.e5, m.e6, m.e7,
m.e8, m.e9, m.e10, m.e11);
}
// Return the transpose of the inverse done via the classical adjoint. This
// skips division by the determinant, so vectors transformed by the resulting
// transform will not retain their original length.
// Reference: "Transformations of Surface Normal Vectors" by Ken Turkowski.
function transAdjoint(a) {
var a0 = a.e0, a1 = a.e1, a2 = a.e2, a4 = a.e4, a5 = a.e5;
var a6 = a.e6, a8 = a.e8, a9 = a.e9, a10 = a.e10;
return new AffineMatrix(
a10 * a5 - a6 * a9,
a6 * a8 - a4 * a10,
a4 * a9 - a8 * a5,
0,
a2 * a9 - a10 * a1,
a10 * a0 - a2 * a8,
a8 * a1 - a0 * a9,
0,
a6 * a1 - a2 * a5,
a4 * a2 - a6 * a0,
a0 * a5 - a4 * a1,
0
);
}
// Transform the point |p| by the AffineMatrix |t|.
function transformPoint(t, p) {
return {
x: t.e0 * p.x + t.e1 * p.y + t.e2 * p.z + t.e3,
y: t.e4 * p.x + t.e5 * p.y + t.e6 * p.z + t.e7,
z: t.e8 * p.x + t.e9 * p.y + t.e10 * p.z + t.e11
};
}
// A Transform is a convenient wrapper around a AffineMatrix, and it is what
// will be exposed for most transforms (camera, etc).
function Transform() {
this.reset();
}
// Reset the transform to the identity matrix.
Transform.prototype.reset = function() {
this.m = makeIdentityAffine();
};
// TODO(deanm): We are creating two extra objects here. What would be most
// effecient is something like multiplyAffineByRotateXIP(this.m), etc.
Transform.prototype.rotateX = function(theta) {
this.m =
multiplyAffine(makeRotateAffineX(theta), this.m);
};
Transform.prototype.rotateXPre = function(theta) {
this.m =
multiplyAffine(this.m, makeRotateAffineX(theta));
};
Transform.prototype.rotateY = function(theta) {
this.m =
multiplyAffine(makeRotateAffineY(theta), this.m);
};
Transform.prototype.rotateYPre = function(theta) {
this.m =
multiplyAffine(this.m, makeRotateAffineY(theta));
};
Transform.prototype.rotateZ = function(theta) {
this.m =
multiplyAffine(makeRotateAffineZ(theta), this.m);
};
Transform.prototype.rotateZPre = function(theta) {
this.m =
multiplyAffine(this.m, makeRotateAffineZ(theta));
};
Transform.prototype.translate = function(dx, dy, dz) {
this.m =
multiplyAffine(makeTranslateAffine(dx, dy, dz), this.m);
};
Transform.prototype.translatePre = function(dx, dy, dz) {
this.m =
multiplyAffine(this.m, makeTranslateAffine(dx, dy, dz));
};
Transform.prototype.scale = function(sx, sy, sz) {
this.m =
multiplyAffine(makeScaleAffine(sx, sy, sz), this.m);
};
Transform.prototype.scalePre = function(sx, sy, sz) {
this.m =
multiplyAffine(this.m, makeScaleAffine(sx, sy, sz));
};
Transform.prototype.transformPoint = function(p) {
return transformPoint(this.m, p);
};
Transform.prototype.multTransform = function(t) {
this.m = multiplyAffine(this.m, t.m);
};
Transform.prototype.setDCM = function(u, v, w) {
var m = this.m;
m.e0 = u.x; m.e4 = u.y; m.e8 = u.z;
m.e1 = v.x; m.e5 = v.y; m.e9 = v.z;
m.e2 = w.x; m.e6 = w.y; m.e10 = w.z;
};
Transform.prototype.dup = function() {
// TODO(deanm): This should be better.
var tm = new Transform();
tm.m = dupAffine(this.m);
return tm;
};
// Transform and return a new array of points with transform matrix |t|.
function transformPoints(t, ps) {
var il = ps.length;
var out = Array(il);
for (var i = 0; i < il; ++i) {
out[i] = transformPoint(t, ps[i]);
}
return out;
}
// Average a list of points, returning a new "centroid" point.
function averagePoints(ps) {
var avg = {x: 0, y: 0, z: 0};
for (var i = 0, il = ps.length; i < il; ++i) {
var p = ps[i];
avg.x += p.x;
avg.y += p.y;
avg.z += p.z;
}
// TODO(deanm): 1 divide and 3 multiplies cheaper than 3 divides?
var f = 1 / il;
avg.x *= f;
avg.y *= f;
avg.z *= f;
return avg;
}
// Push a and b away from each other. This means that the distance between
// a and be should be greater, by 2 units, 1 in each direction.
function pushPoints2dIP(a, b) {
var vec = unitVector2d(subPoints2d(b, a));
addPoints2dIP(b, b, vec);
subPoints2dIP(a, a, vec);
}
// RGBA is our simple representation for colors.
function RGBA(r, g, b, a) {
this.setRGBA(r, g, b, a);
};
RGBA.prototype.setRGBA = function(r, g, b, a) {
this.r = r;
this.g = g;
this.b = b;
this.a = a;
};
RGBA.prototype.setRGB = function(r, g, b) {
this.setRGBA(r, g, b, 1);
};
RGBA.prototype.invert = function() {
this.r = 1 - this.r;
this.g = 1 - this.g;
this.b = 1 - this.b;
};
RGBA.prototype.dup = function() {
return new RGBA(this.r, this.g, this.b, this.a);
};
// A QuadFace represents a polygon, either a four sided quad, or sort of a
// degenerated quad triangle. Passing null as i3 indicates a triangle. The
// QuadFace stores indices, which will generally point into some vertex list
// that the QuadFace has nothing to do with. At the annoyance of keeping
// the data up to date, QuadFace stores a pre-calculated centroid and two
// normals (two triangles in a quad). This is an optimization for rendering
// and procedural operations, and you must set them correctly.
// NOTE: The front of a QuadFace has vertices in counter-clockwise order.
function QuadFace(i0, i1, i2, i3) {
this.i0 = i0;
this.i1 = i1;
this.i2 = i2;
this.i3 = i3;
this.centroid = null;
this.normal1 = null;
this.normal2 = null;
}
QuadFace.prototype.isTriangle = function() {
return (this.i3 === null);
};
QuadFace.prototype.setQuad = function(i0, i1, i2, i3) {
this.i0 = i0;
this.i1 = i1;
this.i2 = i2;
this.i3 = i3;
};
QuadFace.prototype.setTriangle = function(i0, i1, i2) {
this.i0 = i0;
this.i1 = i1;
this.i2 = i2;
this.i3 = null;
};
// A Shape represents a mesh, a collection of QuadFaces. The Shape stores
// a list of all vertices (so they can be shared across QuadFaces), and the
// QuadFaces store indices into this list.
//
// All properties of shapes are meant to be public, so access them directly.
function Shape() {
// Array of 3d points, our vertices.
this.vertices = [ ];
// Array of QuadFaces, the indices will point into |vertices|.
this.quads = [ ];
}
// A curve represents a bezier curve, either quadratic or cubic. It is
// the QuadFace equivalent for 3d paths. Like QuadFace, the points are
// indices into a Path.
function Curve(ep, c0, c1) {
this.ep = ep; // End point.
this.c0 = c0; // Control point.
this.c1 = c1; // Control point.
}
Curve.prototype.isQuadratic = function() {
return (this.c1 === null);
};
Curve.prototype.setQuadratic = function(ep, c0) {
this.ep = ep;
this.c0 = c0;
this.c1 = null;
};
Curve.prototype.setCubic = function(ep, c0, c1) {
this.ep = ep;
this.c0 = c0;
this.c1 = c1;
};
// A path is a collection of Curves. The path starts implicitly at
// (0, 0, 0), and then continues along each curve, each piece of curve
// continuing where the last left off, forming a continuous path.
function Path() {
// An array of points.
this.points = [ ];
// The Curves index into points.
this.curves = [ ];
// Optional starting point. If this is null, the path will start at the
// origin (0, 0, 0). Otherwise this is an index into points.
this.starting_point = null;
}
// A camera is represented by a transform, and a focal length.
function Camera() {
this.transform = new Transform();
this.focal_length = 1;
}
// TextureInfo is used to describe when and how a QuadFace should be
// textured. |image| should be something drawable by <canvas>, like a <img>
// or another <canvas> element. This also stores the 2d uv coordinates.
function TextureInfo() {
this.image = null;
this.u0 = null;
this.v0 = null;
this.u1 = null;
this.v1 = null;
this.u2 = null;
this.v2 = null;
this.u3 = null;
this.v3 = null;
};
// This is the guts, drawing 3d onto a <canvas> element. This class does a
// few things:
// - Manage the render state, things like colors, transforms, camera, etc.
// - Manage a buffer of quads to be drawn. When you add something to be
// drawn, it will use the render state at the time it was added. The
// pattern is generally to add some things, modify the render state, add
// some more things, change some colors, add some more, than draw.
// NOTE: The reason for buffering is having to z-sort. We do not perform
// the rasterization, so something like a z-buffer isn't applicable.
// - Draw the buffer of things to be drawn. This will do a background
// color paint, render all of the buffered quads to the screen, etc.
//
// NOTE: Drawing does not clear the buffered quads, so you can keep drawing
// and adding more things and drawing, etc. You must explicitly empty the
// things to be drawn when you want to start fresh.
//
// NOTE: Some things, such as colors, as copied into the buffered state as
// a reference. If you want to update the color on the render state, you
// should replace it with a new color. Modifying the original will modify
// it for objects that have already been buffered. Same holds for textures.
function Renderer(canvas_element) {
// Should we z-sort for painters back to front.
this.perform_z_sorting = true;
// Should we inflate quads to visually cover up antialiasing gaps.
this.draw_overdraw = true;
// Should we skip backface culling.
this.draw_backfaces = false;
this.texture = null;
this.fill_rgba = new RGBA(1, 0, 0, 1);
this.stroke_rgba = null;
this.normal1_rgba = null;
this.normal2_rgba = null;
this.canvas = canvas_element;
this.ctx = canvas_element.getContext('2d');
// The camera.
this.camera = new Camera();
// Object to world coordinates transformation.
this.transform = new Transform();
// Used for pushTransform and popTransform. The current transform is
// always r.transform, and the stack holds anything else. Internal.
this.transform_stack_ = [ ];
// A callback before a QuadFace is processed during bufferShape. This
// allows you to change the render state per-quad, and also to skip a quad
// by returning true from the callback. For example:
// renderer.quad_callback = function(quad_face, quad_index, shape) {
// renderer.fill_rgba.r = quad_index * 40;
// return false; // Don't skip this quad.
// };
this.quad_callback = null;
// Internals, don't access me.
this.width_ = canvas_element.width;
this.height_ = canvas_element.height;
this.scale_ = this.height_ / 2;
this.xoff_ = this.width_ / 2;
this.buffered_quads_ = null;
this.emptyBuffer();
// We prefer these functions as they avoid the CSS color parsing path, but
// if they're not available (Firefox), then augment the ctx to fall back.
if (this.ctx.setStrokeColor == null) {
this.ctx.setStrokeColor = function setStrokeColor(r, g, b, a) {
var rgba = [
Math.floor(r * 255),
Math.floor(g * 255),
Math.floor(b * 255),
a
];
this.strokeStyle = 'rgba(' + rgba.join(',') + ')';
}
}
if (this.ctx.setFillColor == null) {
this.ctx.setFillColor = function setFillColor(r, g, b, a) {
var rgba = [
Math.floor(r * 255),
Math.floor(g * 255),
Math.floor(b * 255),
a
];
this.fillStyle = 'rgba(' + rgba.join(',') + ')';
}
}
}
Renderer.prototype.pushTransform = function() {
this.transform_stack_.push(this.transform.dup());
};
Renderer.prototype.popTransform = function() {
// If the stack is empty we'll end up with undefined as the transform.
this.transform = this.transform_stack_.pop();
};
Renderer.prototype.emptyBuffer = function() {
this.buffered_quads_ = [ ];
};
// TODO(deanm): Pull the project stuff off the class if possible.
// http://en.wikipedia.org/wiki/Pinhole_camera_model
//
// Project the 3d point |p| to a point in 2d.
// Takes the current focal_length_ in account.
Renderer.prototype.projectPointToCanvas = function projectPointToCanvas(p) {
// We're looking down the z-axis in the negative direction...
var v = this.camera.focal_length / -p.z;
var scale = this.scale_;
// Map the height to -1 .. 1, and the width to maintain aspect.
return {x: p.x * v * scale + this.xoff_,
y: p.y * v * -scale + scale};
};
// Project a 3d point onto the 2d canvas surface (pixel coordinates).
// Takes the current focal_length in account.
// TODO: flatten this calculation so we don't need make a method call.
Renderer.prototype.projectPointsToCanvas =
function projectPointsToCanvas(ps) {
var il = ps.length;
var out = Array(il);
for (var i = 0; i < il; ++i) {
out[i] = this.projectPointToCanvas(ps[i]);
}
return out;
};
Renderer.prototype.projectQuadFaceToCanvasIP = function(qf) {
qf.i0 = this.projectPointToCanvas(qf.i0);
qf.i1 = this.projectPointToCanvas(qf.i1);
qf.i2 = this.projectPointToCanvas(qf.i2);
if (!qf.isTriangle())
qf.i3 = this.projectPointToCanvas(qf.i3);
return qf;
};
// Textured triangle drawing by Thatcher Ulrich. Draw a triangle portion of
// an image, with the source (uv coordinates) mapped to screen x/y
// coordinates. A transformation matrix for this mapping is calculated, so
// that the image |im| is rotated / scaled / etc to map to the x/y dest. A
// clipping mask is applied when drawing |im|, so only the triangle is drawn.
function drawCanvasTexturedTriangle(ctx, im,
x0, y0, x1, y1, x2, y2,
sx0, sy0, sx1, sy1, sx2, sy2) {
ctx.save();
// Clip the output to the on-screen triangle boundaries.
ctx.beginPath();
ctx.moveTo(x0, y0);
ctx.lineTo(x1, y1);
ctx.lineTo(x2, y2);
ctx.closePath();
ctx.clip();
var denom =
sx0 * (sy2 - sy1) -
sx1 * sy2 +
sx2 * sy1 +
(sx1 - sx2) * sy0;
var m11 = - (
sy0 * (x2 - x1) -
sy1 * x2 +
sy2 * x1 +
(sy1 - sy2) * x0) / denom;
var m12 = (
sy1 * y2 +
sy0 * (y1 - y2) -
sy2 * y1 +
(sy2 - sy1) * y0) / denom;
var m21 = (
sx0 * (x2 - x1) -
sx1 * x2 +
sx2 * x1 +
(sx1 - sx2) * x0) / denom;
var m22 = - (
sx1 * y2 +
sx0 * (y1 - y2) -
sx2 * y1 +
(sx2 - sx1) * y0) / denom;
var dx = (
sx0 * (sy2 * x1 - sy1 * x2) +
sy0 * (sx1 * x2 - sx2 * x1) +
(sx2 * sy1 - sx1 * sy2) * x0) / denom;
var dy = (
sx0 * (sy2 * y1 - sy1 * y2) +
sy0 * (sx1 * y2 - sx2 * y1) +
(sx2 * sy1 - sx1 * sy2) * y0) / denom;
ctx.transform(m11, m12, m21, m22, dx, dy);
// Draw the whole image. Transform and clip will map it onto the
// correct output triangle.
//
// TODO(tulrich): figure out if drawImage goes faster if we specify the
// rectangle that bounds the source coords.
ctx.drawImage(im, 0, 0);
ctx.restore();
}
// A unit vector down the z-axis.
var g_z_axis_vector = {x: 0, y: 0, z: 1};
// Put a shape into the draw buffer, transforming it by the current camera,
// applying any current render state, etc.
Renderer.prototype.bufferShape = function bufferShape(shape) {
var draw_backfaces = this.draw_backfaces;
var quad_callback = this.quad_callback;
// Our vertex transformation matrix.
var t = multiplyAffine(this.camera.transform.m,
this.transform.m);
// Our normal transformation matrix.
var tn = transAdjoint(t);
// We are transforming the points even if we decide it's back facing.
// We could just transform the normal, and then only transform the
// points if we needed it. But then you need to check to see if the
// point was already translated to avoid duplicating work, or just
// always calculate it and duplicate the work. Not sure what's best...
var world_vertices = transformPoints(t, shape.vertices);
var quads = shape.quads;
for (var j = 0, jl = shape.quads.length; j < jl; ++j) {
var qf = quads[j];
// Call the optional quad callback. This gives a chance to update the
// render state per-quad, before we emit into the buffered quads. It
// also gives the earliest chance to skip a quad.
if (quad_callback !== null && quad_callback(qf, j, shape) === true)
continue;
var centroid = transformPoint(t, qf.centroid);
// Cull quads that are behind the camera.
// TODO(deanm): this should probably involve the focal point?
if (centroid.z >= -1)
continue;
// NOTE: The transform tn isn't going to always keep the vectors unit
// length, so n1 and n2 should be normalized if needed.
// We unit vector n1 (for lighting, etc).
var n1 = unitVector3d(transformPoint(tn, qf.normal1));
var n2 = transformPoint(tn, qf.normal2);
// Backface culling. I'm not sure the exact right way to do this, but
// this seems to look ok, following the eye from the origin. We look
// at the normals of the triangulated quad, and make sure at least one
// is point towards the camera...
if (draw_backfaces !== true &&
dotProduct3d(centroid, n1) > 0 &&
dotProduct3d(centroid, n2) > 0) {
continue;
}
// Lighting intensity is just based on just one of the normals pointing
// towards the camera. Should do something better here someday...
var intensity = dotProduct3d(g_z_axis_vector, n1);
if (intensity < 0)
intensity = 0;
// We map the quad into world coordinates, and also replace the indices
// with the actual points.
var world_qf;
if (qf.isTriangle() === true) {
world_qf = new QuadFace(
world_vertices[qf.i0],
world_vertices[qf.i1],
world_vertices[qf.i2],
null
);
} else {
world_qf = new QuadFace(
world_vertices[qf.i0],
world_vertices[qf.i1],
world_vertices[qf.i2],
world_vertices[qf.i3]
);
}
world_qf.centroid = centroid;
world_qf.normal1 = n1;
world_qf.normal2 = n2;
var obj = {
qf: world_qf,
intensity: intensity,
draw_overdraw: this.draw_overdraw,
texture: this.texture,
fill_rgba: this.fill_rgba,
stroke_rgba: this.stroke_rgba,
normal1_rgba: this.normal1_rgba,
normal2_rgba: this.normal2_rgba
};
this.buffered_quads_.push(obj);
}
};
// Sort an array of points by z axis.
function zSorter(x, y) {
return x.qf.centroid.z - y.qf.centroid.z;
}
// Paint the background. You should setup the fill color on ctx.
Renderer.prototype.drawBackground = function() {
this.ctx.fillRect(0, 0, this.width_, this.height_);
};
// Clear the background so the canvas is transparent.
Renderer.prototype.clearBackground = function() {
this.ctx.clearRect(0, 0, this.width_, this.height_);
};
Renderer.prototype.drawBuffer = function drawBuffer() {
var ctx = this.ctx;
var all_quads = this.buffered_quads_;
var num_quads = all_quads.length;
// Sort the quads by z-index for painters algorithm :(
// We're looking down the z-axis in the negative direction, so we want
// to paint the most negative z quads first.
if (this.perform_z_sorting === true)
all_quads.sort(zSorter);
for (var j = 0; j < num_quads; ++j) {
var obj = all_quads[j];
var qf = obj.qf;
this.projectQuadFaceToCanvasIP(qf);
var is_triangle = qf.isTriangle();
if (obj.draw_overdraw === true) {
// Unfortunately when we fill with canvas, we can get some gap looking
// things on the edges between quads. One possible solution is to
// stroke the path, but this turns out to be really expensive. Instead
// we try to increase the area of the quad. Each edge pushes its
// vertices away from each other. This is sort of similar in concept
// to the builtin canvas shadow support (shadowOffsetX, etc). However,
// Chrome doesn't support shadows correctly now. It does in trunk, but
// using shadows to fill the gaps looks awful, and also seems slower.
pushPoints2dIP(qf.i0, qf.i1);
pushPoints2dIP(qf.i1, qf.i2);
if (is_triangle === true) {
pushPoints2dIP(qf.i2, qf.i0);
} else { // Quad.
pushPoints2dIP(qf.i2, qf.i3);
pushPoints2dIP(qf.i3, qf.i0);
}
}
// Create our quad as a <canvas> path.
ctx.beginPath();
ctx.moveTo(qf.i0.x, qf.i0.y);
ctx.lineTo(qf.i1.x, qf.i1.y);
ctx.lineTo(qf.i2.x, qf.i2.y);
if (is_triangle !== true)
ctx.lineTo(qf.i3.x, qf.i3.y);
// Don't bother closing it unless we need to.
// Fill...
var frgba = obj.fill_rgba;
if (frgba !== null) {
var iy = obj.intensity;
ctx.setFillColor(frgba.r * iy, frgba.g * iy, frgba.b * iy, frgba.a);
ctx.fill();
}
// Texturing...
var texture = obj.texture;
if (texture !== null) {
drawCanvasTexturedTriangle(ctx, texture.image,
qf.i0.x, qf.i0.y, qf.i1.x, qf.i1.y, qf.i2.x, qf.i2.y,
texture.u0, texture.v0, texture.u1, texture.v1,
texture.u2, texture.v2);
if (!is_triangle) {
drawCanvasTexturedTriangle(ctx, texture.image,
qf.i0.x, qf.i0.y, qf.i2.x, qf.i2.y, qf.i3.x, qf.i3.y,
texture.u0, texture.v0, texture.u2, texture.v2,
texture.u3, texture.v3);
}
}
// Stroke...
var srgba = obj.stroke_rgba;
if (srgba !== null) {
ctx.closePath();
ctx.setStrokeColor(srgba.r, srgba.g, srgba.b, srgba.a);
ctx.stroke();
}
// Normal lines (stroke)...
var n1r = obj.normal1_rgba;
var n2r = obj.normal2_rgba;
if (n1r !== null) {
ctx.setStrokeColor(n1r.r, n1r.g, n1r.b, n1r.a);
var screen_centroid = this.projectPointToCanvas(qf.centroid);
var screen_point = this.projectPointToCanvas(
addPoints3d(qf.centroid, unitVector3d(qf.normal1)));
ctx.beginPath();
ctx.moveTo(screen_centroid.x, screen_centroid.y);