forked from MinkaiXu/GeoLDM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_analyze.py
265 lines (228 loc) · 8.63 KB
/
eval_analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Rdkit import should be first, do not move it
try:
from rdkit import Chem
except ModuleNotFoundError:
pass
from mol_gen.models.GeoLDM.utils import create_folders
import argparse
from mol_gen.models.GeoLDM.qm9 import dataset
from mol_gen.models.GeoLDM.qm9.models import (
get_model,
get_autoencoder,
get_latent_diffusion,
)
import os
from mol_gen.models.GeoLDM.equivariant_diffusion.utils import (
assert_mean_zero_with_mask,
remove_mean_with_mask,
assert_correctly_masked,
)
import torch
import time
import pickle
from mol_gen.models.GeoLDM.configs.datasets_config import get_dataset_info
from os.path import join
from mol_gen.models.GeoLDM.qm9.sampling import sample
from mol_gen.models.GeoLDM.qm9.analyze import (
analyze_stability_for_molecules,
analyze_node_distribution,
)
from mol_gen.models.GeoLDM.qm9.utils import prepare_context, compute_mean_mad
from mol_gen.models.GeoLDM.qm9 import visualizer as qm9_visualizer
import mol_gen.models.GeoLDM.qm9.losses as losses
try:
from mol_gen.models.GeoLDM.qm9 import rdkit_functions
except ModuleNotFoundError:
print("Not importing rdkit functions.")
def check_mask_correct(variables, node_mask):
for variable in variables:
assert_correctly_masked(variable, node_mask)
def analyze_and_save(
args,
output_dir,
device,
generative_model,
nodes_dist,
prop_dist,
dataset_info,
n_samples=10,
batch_size=10,
save_to_xyz=False,
):
batch_size = min(batch_size, n_samples)
assert n_samples % batch_size == 0
molecules = {"one_hot": [], "x": [], "node_mask": []}
start_time = time.time()
for i in range(int(n_samples / batch_size)):
nodesxsample = nodes_dist.sample(batch_size)
one_hot, charges, x, node_mask = sample(
args,
device,
generative_model,
dataset_info,
prop_dist=prop_dist,
nodesxsample=nodesxsample,
)
molecules["one_hot"].append(one_hot.detach().cpu())
molecules["x"].append(x.detach().cpu())
molecules["node_mask"].append(node_mask.detach().cpu())
current_num_samples = (i + 1) * batch_size
secs_per_sample = (time.time() - start_time) / current_num_samples
print(
"\t %d/%d Molecules generated at %.2f secs/sample"
% (current_num_samples, n_samples, secs_per_sample)
)
if save_to_xyz:
id_from = i * batch_size
qm9_visualizer.save_xyz_file(
join(output_dir, "generated_molecules/"),
one_hot,
charges,
x,
dataset_info,
id_from,
name="molecule",
node_mask=node_mask,
)
molecules = {key: torch.cat(molecules[key], dim=0) for key in molecules}
stability_dict, rdkit_metrics = analyze_stability_for_molecules(
molecules, dataset_info
)
return stability_dict, rdkit_metrics
def test(
args, flow_dp, nodes_dist, device, dtype, loader, partition="Test", num_passes=1
):
flow_dp.eval()
nll_epoch = 0
n_samples = 0
for pass_number in range(num_passes):
with torch.no_grad():
for i, data in enumerate(loader):
# Get data
x = data["positions"].to(device, dtype)
node_mask = data["atom_mask"].to(device, dtype).unsqueeze(2)
edge_mask = data["edge_mask"].to(device, dtype)
one_hot = data["one_hot"].to(device, dtype)
charges = (
data["charges"] if args.include_charges else torch.zeros(0)
).to(device, dtype)
batch_size = x.size(0)
x = remove_mean_with_mask(x, node_mask)
check_mask_correct([x, one_hot], node_mask)
assert_mean_zero_with_mask(x, node_mask)
h = {"categorical": one_hot, "integer": charges}
if len(args.conditioning) > 0:
context = prepare_context(args.conditioning, data).to(device, dtype)
assert_correctly_masked(context, node_mask)
else:
context = None
# transform batch through flow
nll, _, _ = losses.compute_loss_and_nll(
args, flow_dp, nodes_dist, x, h, node_mask, edge_mask, context
)
# standard nll from forward KL
nll_epoch += nll.item() * batch_size
n_samples += batch_size
if i % args.n_report_steps == 0:
print(
f"\r {partition} NLL \t, iter: {i}/{len(loader)}, "
f"NLL: {nll_epoch/n_samples:.2f}"
)
return nll_epoch / n_samples
def main(
model_path="/aicenter2/mol_generation/ckpts/GeoLDM/drugs_latent2",
n_samples=1000,
batch_size_gen=100,
save_to_xyz=True,
output_dir=None,
device="cuda:0",
):
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_path", type=str, default="outputs/edm_1", help="Specify model path"
)
parser.add_argument("--n_samples", type=int, default=100, help="Specify model path")
parser.add_argument(
"--batch_size_gen", type=int, default=100, help="Specify model path"
)
parser.add_argument(
"--save_to_xyz",
type=eval,
default=False,
help="Should save samples to xyz files.",
)
eval_args, unparsed_args = parser.parse_known_args()
eval_args.model_path = model_path
eval_args.n_samples = n_samples
eval_args.batch_size_gen = batch_size_gen
eval_args.save_to_xyz = save_to_xyz
print(f"Save path:{output_dir}")
assert eval_args.model_path is not None
with open(join(eval_args.model_path, "args.pickle"), "rb") as f:
args = pickle.load(f)
# CAREFUL with this -->
if not hasattr(args, "normalization_factor"):
args.normalization_factor = 1
if not hasattr(args, "aggregation_method"):
args.aggregation_method = "sum"
device = torch.device(f"{device}" if torch.cuda.is_available() else "cpu")
args.device = device
dtype = torch.float32
create_folders(args)
print(args)
# Retrieve QM9 dataloaders
dataloaders, charge_scale = dataset.retrieve_dataloaders(args)
dataset_info = get_dataset_info(args.dataset, args.remove_h)
# Load model
generative_model, nodes_dist, prop_dist = get_latent_diffusion(
args, device, dataset_info, dataloaders["train"]
)
if prop_dist is not None:
property_norms = compute_mean_mad(dataloaders, args.conditioning, args.dataset)
prop_dist.set_normalizer(property_norms)
generative_model.to(device)
fn = "generative_model_ema.npy" if args.ema_decay > 0 else "generative_model.npy"
flow_state_dict = torch.load(join(eval_args.model_path, fn), map_location=device)
generative_model.load_state_dict(flow_state_dict)
# Analyze stability, validity, uniqueness and novelty
stability_dict, rdkit_metrics = analyze_and_save(
args,
output_dir,
device,
generative_model,
nodes_dist,
prop_dist,
dataset_info,
n_samples=eval_args.n_samples,
batch_size=eval_args.batch_size_gen,
save_to_xyz=eval_args.save_to_xyz,
)
print(stability_dict)
# if rdkit_metrics is not None:
# rdkit_metrics = rdkit_metrics[0]
# print("Validity %.4f, Uniqueness: %.4f, Novelty: %.4f" % (rdkit_metrics[0], rdkit_metrics[1], rdkit_metrics[2]))
# else:
# print("Install rdkit roolkit to obtain Validity, Uniqueness, Novelty")
# # In GEOM-Drugs the validation partition is named 'val', not 'valid'.
# if args.dataset == 'geom':
# val_name = 'val'
# num_passes = 1
# else:
# val_name = 'valid'
# num_passes = 5
# # Evaluate negative log-likelihood for the validation and test partitions
# val_nll = test(args, generative_model, nodes_dist, device, dtype,
# dataloaders[val_name],
# partition='Val')
# print(f'Final val nll {val_nll}')
# test_nll = test(args, generative_model, nodes_dist, device, dtype,
# dataloaders['test'],
# partition='Test', num_passes=num_passes)
# print(f'Final test nll {test_nll}')
# print(f'Overview: val nll {val_nll} test nll {test_nll}', stability_dict)
# with open(join(eval_args.model_path, 'eval_log.txt'), 'w') as f:
# print(f'Overview: val nll {val_nll} test nll {test_nll}',
# stability_dict,
# file=f)
if __name__ == "__main__":
main()