-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathindex.html
1156 lines (1040 loc) · 64.1 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head>
<meta name="generator" content="Gatsby 2.22.17" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title data-react-helmet="true">Decile</title>
<meta data-react-helmet="true" charSet="utf-8" />
<meta data-react-helmet="true" name="viewport" content="width=device-width, initialScale=1.0" />
<meta data-react-helmet="true" name="description" content="An ultra customizable generic theme for Stackbit" />
<meta name="viewport" content="width=1200">
<link rel="stylesheet" href="style.css">
<script type="text/javascript" src="assets/js/jquery-1.5.min.js"></script>
<script type="text/javascript" src="assets/js/jquery.jcarousel.js"></script>
<script type="text/javascript">
jQuery(document).ready(function () {
// Initialise the first and second carousel by class selector.
// Note that they use both the same configuration options (none in this case).
jQuery('.d-carousel .carousel').jcarousel({
scroll: 1
});
var blink = document.getElementById('blink');
setInterval(function () {
blink.style.opacity = (blink.style.opacity == 0 ? 1 : 0);
}, 1500);
});
</script>
</head>
<body>
<div id="___gatsby">
<div style="outline:none" tabindex="-1" id="gatsby-focus-wrapper">
<div id="site-wrap" class="site">
<header class="site-header ">
<nav class="navbar navbar-expand-sm bg-light navbar-light ">
<img class="navbar-brand " src="images/DECILE Logo.svg" alt="Logo" style="height:80px;">
<ul class="navbar-nav ml-auto">
<!-- <a class="nav-link" href="/">Home</a> -->
<a class="nav-link" href="#Team">Team</a>
<a class="nav-link" href="#Research">Research</a>
<a class="nav-link" href="/workshop/">Workshop<sup id="blink">new</sup></a>
</ul>
</nav>
</header>
<main id="content" class="site-content">
<!-- <section class="section hero">
<div class="container container--lg">
<div class="flex flex--center align-center ">
<div class="cell section__body">
<div class="section__copy">
<img src="images/DECILE Logo.png" alt="Person 3" width="400" height="133"/>
</div>
<div class="section__actions btn-group"></div>
</div>
</div>
</div>
</section> -->
<section id="Introduction" class="section hero bg-image section--padding">
<!-- <div class="bg-image__image"
style="background-image:url('/images/diagonal-lines.svg');opacity:0.2;background-size:auto;background-repeat:repeat">
</div> -->
<div class="container container--lg">
<div class="flex flex--middle flex--center flex--col-2">
<div class="cell section__media section__media--right image-padding "><img
src="images/DECILE Logo.svg" alt="Hero placeholder image" /></div>
<div class="cell section__body">
<h1 class="section__title">What is DECILE</h1>
<div class="section__copy">
<p><b style="font-size: 18px;">Data Efficient Learning with Less Data</b><br>
State of the art AI and Deep Learning are very data hungry. This comes at
significant cost including larger resource costs (multiple expensive GPUs
and cloud costs), training times (often times multiple days), and human
labeling costs and time. Decile attempts to solve this by answering the
following question. Can we train state of the art deep models with only a
sample (say 5 to 10\%) of massive datasets, while having neglibible impact
in accuracy? Can we do this while reducing training time/cost by an order of
magnitude, and/or significantly reducing the amount of labeled data
required?</p>
</div>
<!--<div class="section__actions btn-group"><a href="https://www.google.com/"
class="btn">Learn More</a></div>-->
</div>
</div>
</div>
</section>
<section class="section hero inverse bg-blue">
<div class="container container--lg">
<div class="container container--md align-center">
</div>
<!-- <section class="container " style="padding-bottom: 2%; "> -->
<div class="container container--l">
<div>
<h2 class="container container--md align-center section__title">Need for DECILE</h2>
</div>
<div class="flex flex--middle flex--center flex--col-2 ">
<div class="e2-35 x-col gc_ai_app gc_ai_build one">
<div class="e2-36 x-text align-center-icon"><br><br>
Staggering Training Costs of Deep Learning
</div>
</div>
<div class="e2-37 x-col gc_ai_app gc_ai_dev two">
<div class="e2-38 x-text align-center-icon"><br><br>
Labeling Large Datasets is Expensive
</div>
</div>
<div class="e2-39 x-col gc_ai_app gc_ai_data three">
<div class="e2-40 x-text align-center-icon"><br><br>
Noise and Imbalance in Data
</div>
</div>
<div class="e2-41 x-col gc_ai_app gc_ai_fuel four">
<div class="e2-42 x-text align-center-icon"><br><br>
Human Consumption and Data Overload
</div>
</div>
<!-- </section> -->
</div>
</div>
</section>
<section id="Modules" class="section ">
<div class="container container--md align-center">
<h2 class="section__title">Modules</h2>
</div>
<div class="d-flex">
<hr class="my-auto flex-grow-1">
<!-- <div class="px-4">CORDS</div> -->
<hr class="my-auto flex-grow-1">
</div>
<div class="container container--lg">
<div class="flex flex--middle flex--center flex--col-2">
<div class="cell section__media section__media--right"><img src="images/Cords_Icon.png"
alt="Feature 1 placeholder image" /></div>
<div class="section__body cell">
<!-- <h3 class="section__title">CORDS</h3> -->
<img class="navbar-brand " src="images/CORDS Logo.svg" alt="Logo"
style="height:80px;">
<div class="section__copy">
<p>Reduce end to end training time from days to hours and hours to minutes using
<b>co</b>resets and <b>d</b>ata <b>s</b>election. CORDS implements a number
of state of the art data subset selection algorithms and coreset algorithms.
Some of the algorithms currently implemented with CORDS include: GLISTER,
GradMatchOMP, GradMatchFixed, CRAIG, SubmodularSelection, RandomSelection
etc
</p>
</div>
<div class="section__actions btn-group" style="padding: 20px;"><a
class="btn btn--secondary" href="https://github.com/decile-team/cords">Learn
More</a></div>
</div>
</div>
<div class="d-flex">
<hr class="my-auto flex-grow-1">
<!-- <div class="px-4">CORDS</div> -->
<hr class="my-auto flex-grow-1">
</div>
<div class="flex flex--middle flex--center flex--col-2">
<div class="cell section__media section__media--right"><img src="images/Distil_Icon.png"
alt="Feature 2 placeholder image" /></div>
<div class="section__body cell">
<!-- <h3 class="section__title">DISTIL</h3> -->
<img class="navbar-brand " src="images/DISTIL Logo.svg" alt="Logo"
style="height:80px;">
<div class="section__copy">
<p>DISTIL is a library that features many state-of-the-art active learning
algorithms. Implemented in PyTorch, it gives fast and efficient
implementations of these active learning algorithms. It allows users to
modularly insert active learning selection into their pre-existing training
loops with minimal change. Most importantly, it features promising results
in achieving high model performance with less amount of labeled data. If you
are looking to cut down on labeling costs, DISTIL should be your go-to for
getting the most out of your data.</p>
</div>
<div class="section__actions btn-group" style="padding: 20px;"><a
class="btn btn--secondary"
href="https://github.com/decile-team/distil">Learn More</a></div>
</div>
</div>
<div class="d-flex">
<hr class="my-auto flex-grow-1">
<!-- <div class="px-4">CORDS</div> -->
<hr class="my-auto flex-grow-1">
</div>
<div class="flex flex--middle flex--center flex--col-2">
<div class="cell section__media section__media--right"><img src="images/submodlib.png"
alt="Feature 3 placeholder image" /></div>
<div class="section__body cell">
<!-- <h3 class="section__title">SUBMODLIB</h3> -->
<img class="navbar-brand " src="images/Submodlib Logo.png" alt="Logo"
style="height:80px;">
<div class="section__copy">
<p>Summarize massive datasets using submodular optimization</p>
</div>
<div class="section__actions btn-group" style="padding: 20px;"><a
class="btn btn--secondary"
href="https://github.com/decile-team/submodlib">Learn More</a></div>
</div>
</div>
<div class="d-flex">
<hr class="my-auto flex-grow-1">
<!-- <div class="px-4">CORDS</div> -->
<hr class="my-auto flex-grow-1">
</div>
<div class="flex flex--middle flex--center flex--col-2">
<div class="cell section__media section__media--right"><a
href="https://github.com/decile-team/spear">
<img src="images/SPEAR Logo.svg" alt="SPEAR" /></a></div>
<div class="section__body cell">
<!-- <h3 class="section__title">SPEAR</h3> -->
<img class="navbar-brand " src="images/SPEAR Logo.svg" alt="Logo"
style="height:80px;">
<div class="section__copy">
<p>SPEAR is a python library that reduce data labeling efforts using data programming. It implements
several recent approaches such as Snorkel, ImplyLoss, Learning to reweight, etc. In addition to data labeling, it integrates semi-supervised
approaches for training and inference.</p>
</div>
<div class="section__actions btn-group" style="padding: 20px;"><a
class="btn btn--secondary" href="https://github.com/decile-team/spear">Learn
More</a></div>
</div>
</div>
<div class="d-flex">
<hr class="my-auto flex-grow-1">
<!-- <div class="px-4">CORDS</div> -->
<hr class="my-auto flex-grow-1">
</div>
<div class="flex flex--middle flex--center flex--col-2">
<div class="cell section__media section__media--right"><img src="images/Interface.png"
alt="lorem-ipsum" width="100%" /></div>
<div class="section__body cell">
<!-- <h3 class="section__title">SPEAR</h3> -->
<img class="navbar-brand " src="images/Trust Logo.svg" alt="Logo"
style="height:80px;">
<div class="section__copy">
<p>Targeted subset selection</p>
</div>
<div class="section__actions btn-group" style="padding: 20px;"><a
class="btn btn--secondary" href="https://github.com/decile-team">Learn
More</a></div>
</div>
</div>
</div>
<div class="d-flex">
<hr class="my-auto flex-grow-1">
<!-- <div class="px-4">CORDS</div> -->
</div>
</section>
<div id="News" class="container align-center ">
<h2 class="section__title" style="margin-left: 7%;">News</h2>
</div>
<section class="container " style="padding-bottom: 2%;padding-left: 5%; ">
<div id="wrapper">
<div class="d-carousel">
<ul class="carousel">
<li> <a
href="https://timesofindia.indiatimes.com/city/mumbai/in-a-first-iit-bombay-to-offer-healthcare-info-course/articleshow/82510791.cms?utm_source=twitter.com&utm_medium=social&utm_campaign=TOIDesktop"><img
src="assets/img/iitb.webp" alt="" /></a>
<h4><a
href="https://timesofindia.indiatimes.com/city/mumbai/in-a-first-iit-bombay-to-offer-healthcare-info-course/articleshow/82510791.cms?utm_source=twitter.com&utm_medium=social&utm_campaign=TOIDesktop">
Decile integrated into modern healthcare curriculum</a></h4>
<p>MUMBAI: When the Indian Institute of Technology, Bombay (IITB), opens its
gates, even if virtually, to the fresh batch of students this August,
healthcare informatics will be one of its new offerings. The institute’s
foray into healthcare will be a coming together of core sciences—maths,
medicine and computer science. It will be offered as an interdisciplinary
dual degree programme as well as a minor programme. </p>
</li>
<li> <a
href="https://www.mid-day.com/mumbai/mumbai-news/article/cctv-tech-by-iit-bombay-checks-footage-sends-out-alerts-23178746"><img
src="assets/img/CCTV-tech_d.jpg" alt="" /></a>
<h4><a
href="https://www.mid-day.com/mumbai/mumbai-news/article/cctv-tech-by-iit-bombay-checks-footage-sends-out-alerts-23178746">IIT-Bombay
utilizes Decile technology to monitor suspicious movements</a></h4>
<p>MUMBAI: Surakshavyuh makes surveillance smart and does in real-time what is
usually a human’s job — monitoring CCTV camera footage for hours and
alerting on suspicious movements</p>
</li>
<li> <a
href="https://timesofindia.indiatimes.com/city/mumbai/mumbai-iit-b-develops-ai-based-solutions-for-video-analytics-surveillance/articleshow/83590627.cms"><img
src="assets/img/IITB2.webp" alt="" /></a>
<h4><a
href="https://timesofindia.indiatimes.com/city/mumbai/mumbai-iit-b-develops-ai-based-solutions-for-video-analytics-surveillance/articleshow/83590627.cms">Decile
used to develop Artificial Intelligence in CCTV software</a></h4>
<p>MUMBAI: Spotting every biker who travelled without a helmet in Mumbai in the
last week may require the police control rooms to go through terabytes of
video footage. But now, that data can be extracted in a short span of time
not by deploying Israeli tech, but by using local solutions developed by
IIT-Bombay.</p>
</li>
<li> <a
href="https://www.hindustantimes.com/cities/mumbai-news/iitbombay-develops-ai-platform-for-real-time-video-surveillance-101623870072155.html"><img
src="assets/img/cctv_stock.jpg" alt="" /></a>
<h4><a
href="https://www.hindustantimes.com/cities/mumbai-news/iitbombay-develops-ai-platform-for-real-time-video-surveillance-101623870072155.html">Military
surveillance utilizes Decile for remote monitoring</a></h4>
<p>MUMBAI: A state-of-the-art video surveillance platform developed by
researchers at the Indian Institute of Technology-Bombay (IIT-B) has found
application in military surveillance as well as remote monitoring of social
distancing norms violations amid Covid-19 pandemic.</p>
</li>
<li> <a href="#"><img src="none" alt="" /></a>
<h4><a href="#"> </a></h4>
<p> </p>
</li>
<li> <a href="#"><img src="none" alt="" /></a>
<h4><a href="#"> </a></h4>
<p> </p>
</li>
<li> <a href="#"><img src="none" alt="" /></a>
<h4><a href="#"></a></h4>
<p> </p>
</li>
</ul>
</div>
<div class="clear"></div>
</div>
</section>
<hr class="my-auto flex-grow-1">
<div id="Team" class="container align-center ">
<h2 class="section__title" style="margin-left: 7%; padding-top: 2%;">Team</h2>
</div>
<section class="container " style="padding-bottom: 2%; ">
<div class="inner">
<div class="flex flex-4 " style="padding-bottom: 4%; ">
<div class="box person ">
<a href="https://sites.google.com/view/rishabhiyer">
<div class="image round">
<img src="images/team/Rishabh Iyer.png" alt="Person 2" />
</div>
<h4 style="padding-bottom:15% ;">Rishabh Iyer</h4>
<p>Assistant Professor, University of Texas Dallass</p>
</a>
</div>
<div class="box person">
<a href="https://www.cse.iitb.ac.in/~ganesh/">
<div class="image round">
<img src="images/team/Ganesh Ramakrishnan.jpeg" alt="Person 3" />
</div>
<h4 style="padding-bottom:4% ;">Ganesh Ramakrishnan</h4>
<p>Institute Chair Professor, Dept of CSE, IIT Bombay</p>
</a>
</div>
<div class="box person">
<a href="https://www.linkedin.com/in/pankaj-singh-b000894a/">
<div class="image round">
<img src="images/team/pankaj.singh.jpg" alt="Person 3" />
</div>
<h4 style="padding-bottom:15% ;">Pankaj Singh</h4>
<p>Director, </p>
<p>Aify Innovation Labs</p>
</a>
</div>
</div>
</section>
<div class="d-flex">
<hr class="my-auto flex-grow-1">
<!-- <div class="px-4">CORDS</div> -->
<hr class="my-auto flex-grow-1">
</div>
<section class="container " style="padding-bottom: 1%; padding-top: 2%;">
<div class="inner">
<div class="flex2 flex-5 ">
<div class="container align-center ">
<h3 class="section__title">Researchers and Code contributors</h3>
</div>
<div class="box person">
<a href="https://gsaiabhishek.github.io/">
<div class="image round">
<img src="images/team/guttu abhishesk.jpg" alt="Person 1" />
</div>
<h4 style="padding-bottom:7% ;">G Sai Abhishek</h4>
<p>B.Tech, <p>IIT Bombay</p>
</p>
</a>
</div>
<div class="box person">
<a href="">
<div class="image round">
<img src="images/team/any.png" alt="Person 3" />
</div>
<h4 style="padding-bottom:0% ;">Nathan Beck</h4>
<p>PhD Student, <p>UT Dallas</p>
</p>
</a>
</div>
<div class="box person">
<a href="https://in.linkedin.com/in/dornavineeth">
<div class="image round">
<img src="images/team/Vineeth Dorna.jpg" alt="Person 3" />
</div>
<h4 style="padding-bottom:7% ;">Vineeth Dorna</h4>
<p>B.Tech, <p>IIT Bombay</p>
</p>
</a>
</div>
<div class="box person">
<a href="https://www.cse.iitb.ac.in/~harshadingole/">
<div class="image round">
<img src="images/team/any.png" alt="Person 3" />
</div>
<h4 style="padding-bottom:7% ;">Harshad Ingole</h4>
<p>B.Tech, <p>IIT Bombay</p>
</p>
</a>
</div>
<div class="box person">
<a href="https://www.cse.iitb.ac.in/~vkaushal/">
<div class="image round">
<img src="images/team/Vishal Kaushal.jpg" alt="Person 3" />
</div>
<h4 style="padding-bottom:7% ;">Vishal Kaushal</h4>
<p>PhD Student, <p>IIT Bombay</p>
</p>
</a>
</div>
</div>
</div>
<div class=" flex flex-4 align-center" style="text-align:center; ">
</div>
</div>
</div>
<div class="d-flex">
<section id="two" class=" container align-center" style="padding-bottom: 6%;">
<div class="inner">
<div class="flex2 flex-5">
<div class="box person">
<a href="">
<div class="image round">
<img src="images/team/Krishna Teja Killamsetty.jfif" alt="Person 3" />
</div>
<h4 style="padding-bottom:0% ;">Krishna Teja Killamsetty</h4>
<p>PhD Student, <p>UT Dallas</p>
</p>
</a>
</div>
<div class="box person">
<a href="https://www.linkedin.com/in/surajkothawade/">
<div class="image round">
<img src="images/team/Suraj Kothawade.jfif" alt="Person 1" />
</div>
<h4>Suraj Kothawade</h4>
<p>PhD Student, <p>UT Dallas</p>
</p>
</div></a>
<div class="box person">
<a href="https://www.cse.iitb.ac.in/~parthlaturia/">
<div class="image round">
<img src="images/team/Parth Laturia.jpg" alt="Person 2" />
</div>
<h4>Parth Laturia</h4>
<p>B.Tech, <p>IIT Bombay</p>
</p>
</a>
</div>
<div class="box person">
<a href="https://www.cse.iitb.ac.in/~ayusham/index.html">
<div class="image round">
<img src="images/team/Ayush Maheshwari.jpeg" alt="Person 2" />
</div>
<h4>Ayush Maheshwari</h4>
<p>PhD Student, <p>IIT Bombay</p>
</p>
</a>
</div>
<div class="box person">
<a href="">
<div class="image round">
<img src="images/team/Durga Sivasubramanian.jpg" alt="Person 2" />
</div>
<h4>Durga Sivasubramanian</h4>
<p>PhD Student, <p>IIT Bombay</p>
</p>
</a>
</div>
</div>
</div>
</div>
</section>
<div class="d-flex">
<!-- <hr class="my-auto flex-grow-1"> -->
<hr class="my-auto flex-grow-1">
</div>
<div class="container container--md align-center" style="padding-top: 2%;">
<h3 class="section__title">Interns</h3>
</div>
<section id="two" class=" container align-center" style="padding-bottom: 6%;">
<div class="inner">
<div class="flex2 flex-5">
<div class="box person">
<a href="https://www.linkedin.com/in/dheerajnbhat/">
<div class="image round">
<img src="images/team/Dheeraj Bhat.jpg" alt="Person 1" />
</div>
<h4>Dheeraj Bhat</h4>
<p>Intern, <p>IIT Bombay</p>
</p>
</a>
</div></a>
<div class="box person">
<a href="https://www.linkedin.com/in/apurvadani98/">
<div class="image round">
<img src="images/team/Apurva Dani.jfif" alt="Person 2" />
</div>
<h4>Apurva Dani</h4>
<p>Intern, <p>IIT Bombay</p>
</p>
</a>
</div>
<div class="box person">
<a href="https://stevejefferson.live/">
<div class="image round">
<img src="images/team/stevejefferson.jpg" alt="Person 2" />
</div>
<h4>Steve Jefferson</h4>
<p>Intern, <p>IIT Bombay</p>
</p>
</a>
</div>
<div class="box person">
<a href="https://www.linkedin.com/in/vinayaksharmalink/">
<div class="image round">
<img src="images/team/Vinayak Sharma.jpeg" alt="Person 2" />
</div>
<h4>Vinayak Sharma</h4>
<p>Intern,<p>IIT Bombay</p>
</p>
</a>
</div>
<div class="box person">
<a href="https://www.linkedin.com/in/amansuman/">
<div class="image round">
<img src="images/team/Aman Image.jpg" alt="Person 2" />
</div>
<h4>Aman Suman</h4>
<p>Intern,<p>IIT Bombay</p>
</p>
</a>
</div>
</div>
</div>
</section>
<section id="Research" class="section section--posts">
<div class="container container--md align-center">
<h2 class="section__title">Research Publications</h2>
</div>
<div class="container container--lg">
<div class="d-flex">
<hr class="my-auto flex-grow-1">
<div class="px-4">CORDS</div>
<hr class="my-auto flex-grow-1">
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="http://proceedings.mlr.press/v37/wei15.pdf">
Submodularity in data subset selection and active learning
</a>
<p class="paper-authors">
Kai Wei, Rishabh Iyer, Jeff Bilmes
</p>
<p class="paper-conference">
International Conference on Machine Learning (ICML) 2015
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank"
href="https://www.cse.iitb.ac.in/~ganesh/papers/wacv2019b.pdf">
Learning From Less Data: A Unified Data Subset Selection and Active Learning Framework for
Computer Vision
</a>
<p class="paper-authors">
Vishal Kaushal, Rishabh Iyer, Suraj Kothiwade, Rohan Mahadev, Khoshrav Doctor, and Ganesh
Ramakrishnan
</p>
<p class="paper-conference">
7th IEEE Winter Conference on Applications of Computer Vision (WACV), 2019 Hawaii, USA
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="https://arxiv.org/pdf/2012.10630.pdf">
GLISTER: Generalization based Data Subset Selection for Efficient and Robust Learning
</a>
<p class="paper-authors">
Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer
</p>
<p class="paper-conference">
35th AAAI Conference on Artificial Intelligence, AAAI 2021
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="http://www.jmlr.org/proceedings/papers/v32/wei14.pdf">
Fast multi-stage submodular maximization
</a>
<p class="paper-authors">
Kai Wei, Rishabh K. Iyer, Jeff A. Bilmes
</p>
<p class="paper-conference">
International Conference on Machine Learning (ICML 2014)
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="https://ieeexplore.ieee.org/document/6854213">
Submodular subset selection for large-scale speech training data
</a>
<p class="paper-authors">
Wei, Kai, et al
</p>
<p class="paper-conference">
2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE,
2014
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="https://arxiv.org/abs/1906.01827">
Coresets for Data-efficient Training of Machine Learning Models
</a>
<p class="paper-authors">
Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec
</p>
<p class="paper-conference">
International Conference on Machine Learning (ICML), July 2020
</p>
</div>
<!--<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="https://www.google.com">
Grad-Match: A Gradient Matching based Data Selection Framework for Efficient Learning (can we list it? It is not yet on arxiv)
</a>
<p class="paper-authors">
S Durga, Krishnateja Killamsetty, Abir De, Ganesh Ramakrishnan, Baharan Mirzasoleiman, Rishabh Iyer
</p>
<p class="paper-conference">
to be published
</p>
</div>-->
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="https://arxiv.org/pdf/2011.07451.pdf">
Coresets for Robust Training of Deep Neural Networks against Noisy Labels
</a>
<p class="paper-authors">
Baharan Mirzasoleiman, Kaidi Cao, Jure Leskovec
</p>
<p class="paper-conference">
InProc. Advances in Neural Information Processing Systems (NeurIPS), 2020
</p>
</div>
<div class="d-flex">
<hr class="my-auto flex-grow-1">
<div class="px-4">DISTIL</div>
<hr class="my-auto flex-grow-1">
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="http://proceedings.mlr.press/v37/wei15.pdf">
Submodularity in data subset selection and active learning
</a>
<p class="paper-authors">
Kai Wei, Rishabh Iyer, Jeff Bilmes
</p>
<p class="paper-conference">
International Conference on Machine Learning (ICML) 2015
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="https://arxiv.org/abs/1906.03671">
Deep batch active learning by diverse, uncertain gradient lower bounds.
</a>
<p class="paper-authors">
Ash, Jordan T., et al.
</p>
<p class="paper-conference">
8th International Conference on Learning Representations (ICLR), 2020
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="https://arxiv.org/pdf/2012.10630.pdf">
GLISTER: Generalization based Data Subset Selection for Efficient and Robust Learning
</a>
<p class="paper-authors">
Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer
</p>
<p class="paper-conference">
In Proceedings of the 35th AAAI Conference on Artificial Intelligence, AAAI 2021
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank"
href="https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17165">
An Interactive Multi-Label Consensus Labeling Model for Multiple Labeler Judgments
</a>
<p class="paper-authors">
Ashish Kulkarni, Narasimha Raju Uppalapati, Pankaj Singh, Ganesh
Ramakrishnan
</p>
<p class="paper-conference">
In Proceedings of the 32th AAAI Conference on Artificial Intelligence, AAAI 2018
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="https://ieeexplore.ieee.org/document/8658965">
Learning From Less Data: Diversified Subset Selection and Active Learning in Image
Classification Tasks
</a>
<p class="paper-authors">
Vishal Kaushal, Rishabh Iyer, Anurag Sahoo, Khoshrav Doctor, Narasimha Raju, Ganesh Ramakrishnan
</p>
<p class="paper-conference">
In Proceedings of The 7th IEEE Winter Conference on Applications of Computer Vision (WACV),
2019, Hawaii, USA
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="https://ieeexplore.ieee.org/document/6889457">
A New Active Labeling Method for Deep Learning
</a>
<p class="paper-authors">
Dan Wang, Yi Shang
</p>
<p class="paper-conference">
International Joint Conference on Neural Networks (IJCNN), 2014
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="https://arxiv.org/abs/1703.02910">
Deep Bayesian Active Learning with Image Data
</a>
<p class="paper-authors">
Yarin Gal, Riashat Islam, Zoubin Ghahramani
</p>
<p class="paper-conference">
34th International Conference on Machine Learning(ICML), 2017
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="https://openreview.net/forum?id=H1aIuk-RW">
Active Learning for Convolutional Neural Networks: A Core-Set Approach
</a>
<p class="paper-authors">
Ozan Sener, Silvio Savarese
</p>
<p class="paper-conference">
6th International Conference on Learning Representations (ICLR), 2018
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="https://arxiv.org/abs/1802.09841">
Adversarial Active Learning for Deep Networks: a Margin Based Approach
</a>
<p class="paper-authors">
Melanie Ducoffe, Frederic Precioso
</p>
<p class="paper-conference">
arXiv, 2018.
</p>
</div>
<div class="d-flex">
<hr class="my-auto flex-grow-1">
<div class="px-4">SUBMODLIB </div>
<hr class="my-auto flex-grow-1">
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="https://doi.org/10.1109/WACV.2019.00076">
A Framework towards Domain Specific Video Summarization
</a>
<p class="paper-authors">
Vishal Kaushal, Sandeep Subramanian, Suraj Kothawade, Rishabh Iyer, Ganesh Ramakrishnan
</p>
<p class="paper-conference">
In Proceedings of The 7th IEEE Winter Conference on Applications of Computer Vision (WACV),
2019, Hawaii, USA.
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="https://doi.org/10.1109/WACV.2019.00054">
Demystifying Multi-Faceted Video Summarization: Tradeoff Between Diversity,Representation,
Coverage and Importance
</a>
<p class="paper-authors">
Vishal Kaushal, Rishabh Iyer, Anurag Sahoo, Pratik Dubal, Suraj Kothawade, Rohan Mahadev, Kunal
Dargan, Ganesh Ramakrishnan
</p>
<p class="paper-conference">
n Proceedings of The 7th IEEE Winter Conference on Applications of Computer Vision (WACV), 2019,
Hawaii, USA.
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank"
href="https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16911">
Synthesis of Programs from Multimodal Datasets
</a>
<p class="paper-authors">
Shantanu Thakoor, Simoni Shah, Ganesh Ramakrishnan, Amitabha Sanyal
</p>
<p class="paper-conference">
In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI-18), New Orleans,
Louisiana, USA.
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="https://www.cse.iitb.ac.in/~ganesh/papers/cikm16a.pdf">
Beyond clustering: Sub-DAG Discovery for Categorising Documents
</a>
<p class="paper-authors">
Ramakrishna Bairi, Mark Carman and Ganesh Ramakrishnan
</p>
<p class="paper-conference">
In Proceedings of the 25th International Conference on Information and Knowledge Management
(CIKM 2016), Indianapolis, USA
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="https://doi.org/10.1007/978-3-319-31753-3_24">
Building Compact Lexicons for Cross-Domain SMT by mining near-optimal Pattern Sets
</a>
<p class="paper-authors">
Pankaj Singh, Ashish Kulkarni, Himanshu Ojha, Vishwajeet Kumar, Ganesh Ramakrishnan,
</p>
<p class="paper-conference">
In Proceedings of the 20th Pacific Asia Conference on Knowledge Discovery and Data Mining
(PAKDD) 2016.
</p>
</div>
<div class="d-flex">
<hr class="my-auto flex-grow-1">
<div class="px-4">SPEAR </div>
<hr class="my-auto flex-grow-1">
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="https://aaai.org/ojs/index.php/AAAI/article/view/5742">
Data Programming using Continuous and Quality-Guided Labeling Function
</a>
<p class="paper-authors">
Oishik Chatterjee, Ganesh Ramakrishnan, Sunita Sarawagi
</p>
<p class="paper-conference">
In Proceedings of The Thirty-Fourth AAAI Conferenceon Artificial Intelligence (AAAI 2020), New
York, USA.
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank"
href="https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17165">
An Interactive Multi-Label Consensus Labeling Model for Multiple Labeler Judgments
</a>
<p class="paper-authors">
Ashish Kulkarni, Narasimha Raju Uppalapati, Pankaj Singh, Ganesh
Ramakrishnan
</p>
<p class="paper-conference">
In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI-18), New Orleans,
Louisiana, USA.
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank"
href="https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16911">
Synthesis of Programs from Multimodal Datasets
</a>
<p class="paper-authors">
Shantanu Thakoor, Simoni Shah, Ganesh Ramakrishnan, Amitabha Sanyal
</p>
<p class="paper-conference">
In
Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI-18), New Orleans,
Louisiana, USA.
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="http://ceur-ws.org/Vol-1187/paper-06.pdf">
Comparison between Explicit Learning and Implicit Modeling of Relational Features in Structured
Output Spaces
</a>
<p class="paper-authors">
Ajay Nagesh, Naveen Nair and Ganesh Ramakrishnan
</p>
<p class="paper-conference">
In Proceedings of the 23rd International Conference on Inductive Logic Programming (ILP), 2013,
Rio De Janerio, Brazil.
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank" href="https://www.aclweb.org/anthology/D12-1012/">
Towards Efficient Named-Entity Rule Induction for Customizability
</a>
<p class="paper-authors">
Ajay Nagesh, Ganesh Ramakrishnan, Laura Chiticariu, Rajasekar Krishnamurthy, Ankush Dharkar,
Pushpak Bhattacharyya
</p>
<p class="paper-conference">
In Proceedings of the 2012 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2012, Jeju, Korea.
</p>
</div>
<div class="paper XXsnipcss_extracted_selector_selectionXX">
<a class="paper-title" target="_blank"
href="http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4918">
Rule Ensemble Learning Using Hierarchical Kernels in Structured Output Spaces
</a>
<p class="paper-authors">
Naveen Nair, Amrita Saha, Ganesh Ramakrishnan, Shonali Krishnaswamy
</p>
<p class="paper-conference">
In Proceedings of the Twenty-Sixth Conference on Artificial Intelligence (AAAI), 2012, Toronto,
Canada.
</p>
</div>