-
Notifications
You must be signed in to change notification settings - Fork 4
/
proofs.tex
237 lines (207 loc) · 10.6 KB
/
proofs.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
\section{Full proofs}\label{sec:proofs}
In this section, we give the full proofs of our claims.
Appendix~\ref{sec:proofs:comp-ind} proves some facts about
computationally indistinguishable distributions. In
Appendix~\ref{sec:proofs:unpred-dist}, we introduce unpredictable distributions
and show that public keys are unpredictable. In Appendix~\ref{sec:proofs:ro},
we prove some facts about the statistical properties of random oracles,
including Lemma~\ref{lem.perturbation} from which the unspendability of our
scheme follows and Lemma~\ref{lem:ro-unpredictability} from which the
uncensorability of our scheme follows.
\subsection{Computational indistinguishability}\label{sec:proofs:comp-ind}
\import{.}{./algorithms/alg.dist-game.tex}
We review the definition of computational indistinguishability between two
distributions $X$ and $Y$. Define the cryptographic game illustrated in
Algorithm~\ref{alg.dist-game}.
Computational indistinguishability mandates that no adversary can win the game,
except with negligible probability.
\begin{definition}[Computational indistinguishability]
Two distribution ensembles $\{X_\kappa\}_{\kappa\in\mathbb{N}}$ and $\{Y_\kappa\}_{\kappa\in\mathbb{N}}$ are
\emph{computationally indistinguishable}
if for every probabilistic polynomial-time adversary $\mathcal{A}$,
there exists a negligible function $\negl$ such that
$\Pr[\distattack_{\mathcal{A},X,Y}(\kappa) = \true] \leq \frac{1}{2} + \negl$.
\end{definition}
It is clear that applying an efficiently computable function to
indistinguishable distributions preserves indistinguishability.
\import{./}{algorithms/alg.pres-distinguisher.tex}
\begin{lem}[Indistinguishability preservation]\label{lem:ind-pres}
Given two
computationally indistinguishable distribution ensembles
$\{X_\kappa\}_{\kappa\in\mathbb{N}}$ and $\{Y_\kappa\}_{\kappa\in\mathbb{N}}$,
let
$\{f_\kappa\}_{\kappa\in\mathbb{N}}$
be a family of efficiently computable functions.
Then the distribution ensembles
$X' = \{f_\kappa(X_\kappa)\}_{\kappa\in\mathbb{N}}$
and
$Y' = \{f_\kappa(Y_\kappa)\}_{\kappa\in\mathbb{N}}$
are computationally indistinguishable.
\end{lem}
\begin{proof}
Let $\mathcal{A}$ be a probabilistic polynomial-time distinguisher
between $X'$ and $Y'$. Consider the probabilistic polynomial-time distinguisher $\mathcal{A}^*$ between $X$ and $Y$ illustrated in Algorithm~\ref{alg.pres-distinguisher}. Then
$\Pr[\distattack_{\mathcal{A}^*}(\kappa) = \true] =
\Pr[\distattack_{\mathcal{A}}(\kappa) = \true]$.
As $\Pr[\distattack_{\mathcal{A}^*}(\kappa) = \true] \leq \frac{1}{2} + \negl$, therefore $\Pr[\distattack_{\mathcal{A}}(\kappa) = \true] \leq \frac{1}{2} + \negl$.
\end{proof}
\subsection{Unpredictable distributions}\label{sec:proofs:unpred-dist}
We call a distribution ensemble \emph{unpredictable} if no
polynomial-time adversary can guess its output. The cryptographic
predictability game is illustrated in Algorithm~\ref{alg.predict-game} and the
security definition is given below.
\import{.}{./algorithms/alg.predict-game.tex}
\begin{definition}[Unpredictable distribution]
A distribution ensemble $\{X_{\kappa}\}_{\kappa\in\mathbb{N}}$ is
\emph{unpredictable} if for all probabilistic polynomial-time adversaries
$\mathcal{A}$ there is a negligible function $\negl$ such that
\[\Pr[\predict_{\mathcal{A},X}(\kappa) = \true] < \negl\,.\]
\end{definition}
We observe that, if each element of a distribution appears with negligible
probability, then the distribution must be unpredictable.
\begin{lem}[Negligible unpredictability]\label{lem:negl-unpred}
Consider a distribution ensemble $\{X_{\kappa}\}_{\kappa\in\mathbb{N}}$ and
a negligible function $\negl$. If
\[\max_{x \in [X_\kappa]}\Pr_{x^* \gets X_\kappa}[x^* = x] \leq \negl\,,\]
then $X$ is unpredictable.
\end{lem}
\begin{proof}
Consider a probabilistic polynomial-time adversary $\mathcal{A}$ which
predicts $X_\kappa$. The adversary is not given any input beyond $1^\kappa$,
hence the distribution of its output is independent from the choice of the
challenger. Therefore
\begin{align*}
\Pr[\predict_{\mathcal{A},X}(\kappa) = \true] &=
\sum_{x' \in [X]}\Pr_{x \gets X}[\mathcal{A}(\kappa) = x'\land x = x'] =\\
\sum_{x' \in [X]}\Pr[\mathcal{A}(\kappa) = x']\Pr_{x \gets X}[x = x']
&\leq \negl\sum_{x' \in [X]}\Pr[\mathcal{A}(\kappa) = x']
\leq \negl
\,.
\end{align*}
\end{proof}
Finally, we observe that public keys generated from secure signature schemes must
be unpredictable.
\import{./}{algorithms/alg.forgery-adversary.tex}
\restateLemPkUnpredictability*
\begin{proof}
Let
$p = \max_{\widehat{pk} \in [X_\kappa]}\Pr_{pk \gets X_\kappa}[pk = \widehat{pk}]$.
Consider the existential forgery adversary $\mathcal{A}$ illustrated in
Algorithm~\ref{alg.forgery-adversary} which works as
follows. It receives $pk$ as its input from the challenger, but ignores it
and generates a new key pair $(pk', sk') \gets \textsf{Gen}(1^\kappa)$.
Since the
two invocations of $\textsf{Gen}$ are independent,
\begin{align*}
\Pr[pk = pk'] \geq \max_{\widehat{pk} \in [X_\kappa]}\Pr[pk = \widehat{pk} \land pk' = \widehat{pk}]\\
= \max_{\widehat{pk} \in [X_\kappa]}\Pr[pk = \widehat{pk}]\Pr[pk' = \widehat{pk}]\\
= \max_{\widehat{pk} \in [X_\kappa]}\left(\Pr[pk = \widehat{pk}]\right)^2
= p^2
\,.
\end{align*}
The adversary checks
whether $pk = pk'$. If not, it aborts. Otherwise, it uses $sk'$ to sign the
message $m = \epsilon$ and returns the forgery $\sigma = \textsf{Sig}(sk, m)$.
From the correctness of the signature scheme, if $pk = pk'$, then
$\textsf{Ver}(pk, \textsf{Sig}(sk, m)) = \true$ and the adversary is
successful. Since the signature scheme is secure,
$\Pr[\textsf{Sig-forge}^{cma}_{\mathcal{A},S}] = \negl$.
But $\Pr[pk = pk'] \leq \Pr[\textsf{Sig-forge}^{cma}_{\mathcal{A},S}]$ and
therefore $p \leq \sqrt{\Pr[pk = pk']} \leq \negl$. Applying
Lemma~\ref{lem:negl-unpred}, we deduce that the distribution ensemble $X_\kappa$ is
unpredictable.
\end{proof}
\subsection{Random Oracle properties}\label{sec:proofs:ro}
In this section, we state some statistical properties of the Random
Oracle, which are useful for the proofs of our main results.
\restateLemPerturbation*
\begin{proof}
Let \textsc{Match} denote the event that there exist $1 \leq i \neq j \leq p(\kappa)$ such that $s_i = F(s_j)$.
Let $\textsc{Match}_{i, j}$ denote the event that $s_i = F(s_j)$. Apply a union bound to obtain
$
\Pr[\bigcup_{i \neq j}\textsc{Match}_{i, j}] \leq \sum_{i \neq j} \Pr[\textsc{Match}_{i, j}]
$.
But $\Pr[\textsc{Match}_{i, j}] = 2^{-p(\kappa)}$ and therefore
$\Pr[\textsc{Match}] \leq \sum_{i \neq j} 2^{-p(\kappa)} \leq p^2(\kappa) 2^{-p(\kappa)}$.
\end{proof}
\import{.}{./algorithms/alg.predictability-adversary.tex}
\restateLemRoUnpredictability*
\begin{proof}
Let $\mathcal{A}$ be an arbitrary polynomial distinguisher between
$X$ and $\uniform(\{0, 1\}^\kappa)$.
We construct an adversary $\mathcal{A}^*$
against $\predict_{\mathcal{T}}$.
Let $r$ denote the (polynomial)
maximum number of random oracle queries of $\mathcal{A}$.
The adversary $\mathcal{A}^*$ is illustrated in
Algorithm~\ref{alg.predictability-adversary} and works as follows.
Initially, it chooses a random bit $b \stackrel{\$}{\gets} \{0, 1\}$ and
sets $Z = X$ if $b = 0$, otherwise
sets $Z = \uniformk$.
It samples $z \gets Z$.
If $b = 0$, then $z$ is chosen by applying $\GenAddr$ which involves
calling the random oracle $H$ with some input $pk$.
It then chooses one of $\mathcal{A}$'s queries $j \stackrel{\$}{\gets} [r]$
uniformly at random. Finally, it outputs the input received by the random
oracle during the $j^\text{th}$ query of $\mathcal{A}$.
We will consider two cases. Either $\mathcal{A}$ makes a random oracle query
containing $pk$, or it does not. We will argue that, if $\mathcal{A}$ makes
a random oracle query containing $pk$ with non-negligible probability, then
$\mathcal{A}^*$ will be successful with non-negligible probability. However,
we will argue that, if $\mathcal{A}$ does not make the particular random
oracle query, it will be unable to distinguish $X$ from $\uniformk$.
Let $\query$ denote the event that $b = 0$ and $\mathcal{A}$ asks a random
oracle query with input $pk$.
Let $x$ denote the random variable sampled by the challenger in the
predictability game of $\mathcal{A}^*$.
Let $\extqry$ denote the event that $b = 0$ and $\mathcal{A}$ asks a
random oracle query with input equal to $x$. Observe that, since the input to
$\mathcal{A}$ does not depend on $x$, we have that
$\Pr[\extqry] = \Pr[\query]$. As $j$ is chosen independently of the execution
of $\mathcal{A}$, conditioned on $\extqry$ the probability that
$\mathcal{A}^*$ is able to correctly guess which query caused $\extqry$ will
be $\frac{1}{r}$. Therefore we obtain that
$\Pr[\predict_{\mathcal{A}^*,\mathcal{T}}(\kappa) = \true]
= \frac{1}{r}\Pr[\extqry]
= \frac{1}{r}\Pr[\query]$.
As
$\Pr[\predict_{\mathcal{A}^*,\mathcal{T}}(\kappa) = \true] \leq \negl$
and $r$
is polynomial in $\kappa$, we deduce that $\Pr[\query] \leq \negl$.
Consider the computational
indistinguishability game depicted in
Algorithm~\ref{alg.dist-game} in which the distinguisher gives a guess $b^*$
attempting to identify the origin $b$ of its input.
If $b = 0$, then the distinguisher $\mathcal{A}$ receives a truly random input
$pkh = H(pk)$.
If the distinguisher does not query the random oracle
with input $pk$, the input of the distinguisher is truly random
and therefore $\Pr[b^* = 0|b = 0|\lnot \query] = \Pr[b^* = 0|b = 1]$.
Consider the case where $b = 0$ and apply total probability to obtain
\begin{align*}
&\Pr[b^* = 0|b = 0] =\\
&\Pr[b^* = 0|\query]\Pr[\query] +
\Pr[b^* = 0|b = 0|\lnot \query]\Pr[\lnot \query]\\
\leq &\Pr[b^* = 0|\query]\Pr[\query] +
\Pr[b^* = 0|b = 0|\lnot \query]\\
\leq &\Pr[\query] + \Pr[b^* = 0|b = 0|\lnot \query]
\end{align*}
Then
$
\Pr[\distattack_{\mathcal{A},X,\uniformk} = \true]
=
\Pr[b = b^*]
$ is the probability of success of the distinguisher.
Applying total probability we obtain
\begin{align*}
\Pr[b = b^*] &= \Pr[b = b^*|b = 0]\Pr[b = 0] + \Pr[b = b^*|b = 1]\Pr[b = 1]\\
&= \frac{1}{2}(\Pr[b^* = 0|b = 0] + \Pr[b^* = 1|b = 1])\\
&\leq \frac{1}{2}(\Pr[\query] + \Pr[b^* = 0|b = 0|\lnot \query]
+ \Pr[b^* = 1|b = 1])\\
&= \frac{1}{2}(\Pr[\query] + \Pr[b^* = 0|b = 1]
+ \Pr[b^* = 1|b = 1])\\
&= \frac{1}{2}(\Pr[\query] + \Pr[b^* = 0|b = 1]
+ (1 - \Pr[b^* = 0|b = 1]))\\
&= \frac{1}{2}(1 + \Pr[\query]) \leq \frac{1}{2} + \negl
\end{align*}
\end{proof}