Here's a PyTorch cheat sheet that covers some common operations and concepts:
pip install torch
import torch
# Creating Tensors:
tensor_a = torch.tensor([1, 2, 3])
tensor_b = torch.Tensor([[4, 5, 6], [7, 8, 9]])
# Operations:
result = tensor_a + tensor_b
# Tensors with gradient tracking:
x = torch.tensor([1.0], requires_grad=True)
y = x**2
y.backward()
# Accessing gradients:
print(x.grad)
import torch.nn as nn
# Define a neural network:
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.fc = nn.Linear(784, 128)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.2)
self.output_layer = nn.Linear(128, 10)
def forward(self, x):
x = self.fc(x)
x = self.relu(x)
x = self.dropout(x)
x = self.output_layer(x)
return x
# Instantiate the model:
model = MyModel()
# Loss function:
criterion = nn.CrossEntropyLoss()
# Optimizer:
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# Training loop:
for epoch in range(5):
for inputs, labels in train_data:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# Save model:
torch.save(model.state_dict(), 'my_model.pth')
# Load model:
model.load_state_dict(torch.load('my_model.pth'))
from torch.utils.data import Dataset, DataLoader
# Custom dataset class:
class MyDataset(Dataset):
def __init__(self, data, labels):
self.data = data
self.labels = labels
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx], self.labels[idx]
# Creating DataLoader:
train_dataset = MyDataset(train_data, train_labels)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
# Move model to GPU:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Move tensors to GPU:
inputs, labels = inputs.to(device), labels.to(device)
# Install TensorBoardX:
# pip install tensorboardX
# Import and use:
from tensorboardX import SummaryWriter
writer = SummaryWriter()
writer.add_scalar('loss', loss.item(), global_step=iteration)
This cheat sheet provides a quick reference for working with PyTorch. Like TensorFlow, PyTorch is a powerful deep learning library with many features, and this cheat sheet covers only some fundamental aspects. For more detailed information, refer to the official PyTorch documentation: PyTorch Documentation.