This repository has been archived by the owner on Oct 4, 2023. It is now read-only.
forked from rximg/EfficientAD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
193 lines (178 loc) · 9.31 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Require: T, S, A, µ, σ, qa ST, qb ST, qa AE, and qb AE, as returned by Algorithm
# 1 Require: Test image Itest ∈ R 3×256×256 1: Y 0 ← T(Itest), Y S ← S(Itest), Y A ← A(Itest)
# 2: Compute the normalized teacher output Yˆ given by Yˆ c = (Yc 0 − µc)σc −1 for each c ∈ {1, . . . , 384}
# 3: Split the student output into Y ST ∈ R 384×64×64 and YSTAE ∈ R 384×64×64 as above
# 4: Compute the squared difference DST c,w,h = (Yˆ c,w,h − Y ST c,w,h) 2 for each tuple (c, w, h)
# 5: Compute the squared difference DSTAE c,w,h = (Y A c,w,h − Yc,w,h STAE) 2 for each tuple (c, w, h)
# 6: Compute the anomaly maps MST = 384−1 P 384 c=1 Dc ST and MAE = 384−1 P 384 c=1 Dc STAE
# 7: Resize MST and MAE to 256 × 256 pixels using bilinear interpolation
# 8: Compute the normalized ˆMST = 0.1(MST − qa ST)(qb ST − qa ST) −1
# 9: Compute the normalized ˆMAE = 0.1(MAE − qa AE)(qb AE − qa AE) −1
# 10: Compute the combined anomaly map M = 0.5 ˆMST + 0.5 ˆMAE
# 11: Compute the image-level score as mimage = maxi,j Mi,j
# 12: return M and mimage
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import numpy as np
import shutil
from torchvision import transforms
from models import Teacher,Student,AutoEncoder
from data_loader import MVTecDataset,get_AD_dataset
import pdb
import cv2
import os
from tqdm import tqdm
import os.path as osp
from sklearn.metrics import roc_auc_score,average_precision_score
class Inference(object):
def __init__(self,category,val_dir,model_path,ratio=0.1,score_in_mid_size=224,channel=384, result_path = 'data/result', model_size='S',resize=256,device='cuda',dataset_type='MVTec') -> None:
self.category = category
self.ratio = ratio
self.resize = resize
self.score_in_mid_size = score_in_mid_size
self.val_dir = val_dir
self.channel = channel
self.dataset_type = dataset_type
self.result_path = osp.join(result_path,label)
self.teacher = Teacher(model_size)
self.student = Student(model_size)
self.ae = AutoEncoder()
self.model_path = model_path
self.device = device
self.load_model()
self.data_transforms = transforms.Compose([
transforms.Resize((resize, resize)),
transforms.ToTensor(),
])
self.gt_transforms = transforms.Compose([
transforms.Resize((resize, resize)),
transforms.ToTensor()])
def load_model(self,):
teacher_ckpt = torch.load(self.model_path+'/best_teacher.pth',map_location=torch.device(self.device))
student_ckpt = torch.load(self.model_path+'/{}_student.pth'.format(self.category),map_location=torch.device(self.device))
ae_ckpt = torch.load(self.model_path+'/{}_autoencoder.pth'.format(self.category),map_location=torch.device(self.device))
self.teacher.load_state_dict(teacher_ckpt)
self.student.load_state_dict(student_ckpt)
self.ae.load_state_dict(ae_ckpt)
self.teacher.eval()
self.student.eval()
self.ae.eval()
self.teacher.to(self.device)
self.student.to(self.device)
self.ae.to(self.device)
quantiles = np.load(self.model_path+'/{}_quantiles.npy'.format(self.category),allow_pickle=True).item()
self.qa_st = torch.tensor(quantiles['qa_st'],device=self.device)
self.qb_st = torch.tensor(quantiles['qb_st'],device=self.device)
self.qa_ae = torch.tensor(quantiles['qa_ae'],device=self.device)
self.qb_ae = torch.tensor(quantiles['qb_ae'],device=self.device)
self.channel_std = torch.tensor(quantiles['std'],device=self.device)
self.channel_mean = torch.tensor(quantiles['mean'],device=self.device)
def infer_single(self,sample_batched):
img = sample_batched['image']
img = img.to(self.device)
with torch.no_grad():
teacher_output = self.teacher(img)
student_output = self.student(img)
ae_output = self.ae(img)
#3: Split the student output into Y ST ∈ R 384×64×64 and Y STAE ∈ R 384×64×64 as above
y_st = student_output[:, :self.channel, :, :]
y_stae = student_output[:, -self.channel:, :, :]
normal_teacher_output = (teacher_output-self.channel_mean)/self.channel_std
distance_st = torch.pow(normal_teacher_output-y_st,2)
distance_stae = torch.pow(ae_output-y_stae,2)
fmap_st = torch.mean(distance_st,dim=1,keepdim=True)
fmap_stae = torch.mean(distance_stae,dim=1,keepdim=True)
# fmap_st = fmap_st.view(1,1,64,64)
# fmap_stae = fmap_stae.view(1,1,64,64)
# pdb.set_trace()
fmap_st = F.interpolate(fmap_st,size=(256,256),mode='bilinear')
fmap_stae = F.interpolate(fmap_stae,size=(256,256),mode='bilinear')
# fmap_st = fmap_st.view(256,256)
normalized_mst = (self.ratio*(fmap_st-self.qa_st))/(self.qb_st-self.qa_st)
normalized_mae = (self.ratio*(fmap_stae-self.qa_ae))/(self.qb_ae-self.qa_ae)
combined_map = 0.5*normalized_mst+0.5*normalized_mae
score_start = (self.resize-self.score_in_mid_size)//2
# pdb.set_trace()
image_score = torch.max(combined_map[:,:,
score_start:score_start+self.score_in_mid_size,
score_start:score_start+self.score_in_mid_size
])
# image_score = torch.max(combined_map)
return combined_map,image_score
def eval(self):
# dataset = MVTecDataset(
# root=self.val_dir,
# transform=self.data_transforms,
# gt_transform=self.gt_transforms,
# phase='test',
# category=self.category
# )
dataset = get_AD_dataset(
type=self.dataset_type,
root=self.val_dir,
transform=self.data_transforms,
gt_transform=self.gt_transforms,
phase='test',
category=self.category
)
dataloader = DataLoader(dataset,batch_size=1,shuffle=True)
total_pixel_scores = torch.empty(0)
total_gt_pixel_scores = torch.empty(0)
num = 0
scores = []
gts = []
print(self.result_path)
if os.path.exists(self.result_path):
shutil.rmtree(self.result_path)
os.makedirs(self.result_path)
for i_batch, sample_batched in tqdm(enumerate(dataloader)):
gts.append(sample_batched['label'].item())
name = sample_batched['name'][0]
label = sample_batched['type'][0]
total_gt_pixel_scores = torch.cat((total_gt_pixel_scores,sample_batched['gt'].view(-1)))
combined_map,image_score = self.infer_single(sample_batched)
scores.append(image_score.item())
total_pixel_scores = torch.cat((total_pixel_scores,combined_map.detach().cpu().view(-1)))
out_dir = '{}/{}'.format(self.result_path,label)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
out_im_path = "{}/{}.png".format(out_dir,name)
out_im_np = combined_map[0,0,:,:].cpu().detach().numpy()
out_im_np = ((out_im_np).clip(0,1)*255).astype(np.uint8)
out_im_np_rgb = cv2.cvtColor(out_im_np,cv2.COLOR_GRAY2RGB)
out_im_thresh = cv2.threshold(out_im_np, 100, 255, cv2.THRESH_BINARY )[1]
out_im_thresh = cv2.cvtColor(out_im_thresh,cv2.COLOR_GRAY2RGB)
origin_img = sample_batched['image'][0].cpu().detach().numpy()
origin_img = np.transpose(origin_img,(1,2,0))
origin_img_np = (origin_img*255).astype(np.uint8)
origin_img_np = cv2.cvtColor(origin_img_np,cv2.COLOR_RGB2BGR)
color_fmap = cv2.applyColorMap(out_im_np, cv2.COLORMAP_JET)
origin_with_fmap = cv2.addWeighted(origin_img_np,0.5,color_fmap,0.5,0)
gt_np = sample_batched['gt'][0].cpu().detach().numpy()
gt_rgb = cv2.cvtColor((gt_np[0,:,:]*255).astype(np.uint8),cv2.COLOR_GRAY2RGB)
# pdb.set_trace()
out_hstack = np.hstack((origin_img_np,gt_rgb,origin_with_fmap,out_im_np_rgb,out_im_thresh))
cv2.imwrite(out_im_path,out_hstack)
gtnp = np.array(gts)
scorenp = np.array(scores)
total_gt_pixel_scoresnp = total_gt_pixel_scores.cpu().detach().numpy().astype('uint8')
total_pixel_scoresnp = total_pixel_scores.cpu().detach().numpy()
# pdb.set_trace()
auroc = roc_auc_score(gtnp,scorenp)
if total_gt_pixel_scoresnp.max()==0:
print("label:{},auroc:{:.4f}".format(self.category,auroc))
return
auroc_pixel = roc_auc_score(total_gt_pixel_scoresnp,total_pixel_scoresnp)
ap_pixel = average_precision_score(total_gt_pixel_scoresnp,total_pixel_scoresnp)
ap = average_precision_score(gtnp,scorenp)
print("label:{},auroc:{:.4f},auroc_pixel:{:.4f},ap:{:.4f},ap_pixel:{:.4f}".format(self.category,auroc,auroc_pixel,ap,ap_pixel))
if __name__ == "__main__":
# val_dir = 'data/uniad224data/'
# model_path = 'ckptS_T'
# label = "HC_35IL1CROP"
val_dir = 'data/MVTec_AD/'
model_path = 'ckptSmall'
label = "bottle"
infer = Inference(label,val_dir,model_path,ratio=1,model_size='S',device='cuda')
infer.eval()