forked from thuyngch/Human-Segmentation-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeasure_model.py
100 lines (78 loc) · 2.72 KB
/
measure_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#------------------------------------------------------------------------------
# Libraries
#------------------------------------------------------------------------------
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
import models
import argparse
from time import time
import torch
from torchsummary import summary
#------------------------------------------------------------------------------
# Argument parsing
#------------------------------------------------------------------------------
parser = argparse.ArgumentParser(description="Arguments for the script")
parser.add_argument('--use_cuda', action='store_true', default=False,
help='Use GPU acceleration')
parser.add_argument('--input_sz', type=int, default=224,
help='Size of the input')
parser.add_argument('--n_measures', type=int, default=1,
help='Number of time measurements')
args = parser.parse_args()
#------------------------------------------------------------------------------
# Create model
#------------------------------------------------------------------------------
# UNet
model = models.UNet(
backbone="mobilenetv2",
num_classes=2,
)
# # DeepLabV3+
# model = DeepLabV3Plus(
# backbone='resnet18',
# output_stride=16,
# num_classes=2,
# pretrained_backbone=None,
# )
# # BiSeNet
# model = BiSeNet(
# backbone='resnet18',
# num_classes=2,
# pretrained_backbone=None,
# )
# # PSPNet
# model = PSPNet(
# backbone='resnet18',
# num_classes=2,
# pretrained_backbone=None,
# )
# # ICNet
# model = ICNet(
# backbone='resnet18',
# num_classes=2,
# pretrained_backbone=None,
# )
# #------------------------------------------------------------------------------
# # Summary network
# #------------------------------------------------------------------------------
model.train()
model.summary(input_shape=(3, args.input_sz, args.input_sz), device='cpu')
# #------------------------------------------------------------------------------
# # Measure time
# #------------------------------------------------------------------------------
# input = torch.randn([1, 3, args.input_sz, args.input_sz], dtype=torch.float)
# if args.use_cuda:
# model.cuda()
# input = input.cuda()
# for _ in range(10):
# model(input)
# start_time = time()
# for _ in range(args.n_measures):
# model(input)
# finish_time = time()
# if args.use_cuda:
# print("Inference time on cuda: %.2f [ms]" % ((finish_time-start_time)*1000/args.n_measures))
# print("Inference fps on cuda: %.2f [fps]" % (1 / ((finish_time-start_time)/args.n_measures)))
# else:
# print("Inference time on cpu: %.2f [ms]" % ((finish_time-start_time)*1000/args.n_measures))
# print("Inference fps on cpu: %.2f [fps]" % (1 / ((finish_time-start_time)/args.n_measures)))