-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_resnet.py
181 lines (158 loc) · 6.29 KB
/
train_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import sys
import numpy as np
os.environ['CUDA_VISIBLE_DEVICES']="0"
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision.datasets as datasets
import torchvision
import torchvision.transforms as transforms
import os
import argparse
from models.resnet import ResNet50
from utils.train_utils import progress_bar
parser = argparse.ArgumentParser(description='PyTorch CIFAR Training')
parser.add_argument('--id', default=None, type=str, required = True,
help='In dataset')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--epoch', default=100, type=int, help='Epoch')
parser.add_argument('--bs', '--batch_size', default=128, type=int,
help='mini-batch size (default: 64)')
parser.add_argument('--resume', '-r', action='store_true',
help='resume from checkpoint')
parser.add_argument('--seed', default=48, type=int,
help='Random Seed')
parser.add_argument('--name', default='ResNet50_cifar', type=str,
help='name of experiment', required = False)
parser.add_argument('--r', default=None, type=int, help='relevance ratio (0,1]', required = True)
args = parser.parse_args()
torch.manual_seed(args.seed)
np.random.seed(args.seed)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
print('==> Preparing data..')
in_dataset = args.id
kwargs = {'num_workers': 8, 'pin_memory': True}
if in_dataset == "CIFAR-10":
normalize = transforms.Normalize(mean=[x/255.0 for x in [125.3, 123.0, 113.9]],
std=[x/255.0 for x in [63.0, 62.1, 66.7]])
elif in_dataset == "CIFAR-100":
normalize = transforms.Normalize(mean=[0.507,0.487,0.441],
std=[0.267,0.256,0.276])
else:
raise Exception("Wrong Dataset")
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
transform_test = transforms.Compose([
transforms.ToTensor(),
normalize
])
if in_dataset == "CIFAR-10":
trainloader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data', train=True, download=True,
transform=transform_train),
batch_size=args.bs, shuffle=True, **kwargs)
valloader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data', train=False, transform=transform_test),
batch_size=args.bs, shuffle=True, **kwargs)
num_classes = 10
elif in_dataset == "CIFAR-100":
trainloader = torch.utils.data.DataLoader(
datasets.CIFAR100('/nobackup/soumya/cifar100/data', train=True, download=True,
transform=transform_train),
batch_size=args.bs, shuffle=True, **kwargs)
valloader = torch.utils.data.DataLoader(
datasets.CIFAR100('/nobackup/soumya/cifar100/data', train=False, transform=transform_test),
batch_size=args.bs, shuffle=True, **kwargs)
num_classes = 100
else:
raise Exception("Wrong Dataset")
print(f"Loading {args.id} with num classes = {num_classes}")
# Model
print('==> Building model..')
net = ResNet50(r = args.r, num_classes = num_classes)
net = net.to(device)
cudnn.benchmark = True
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint/ckpt.pth')
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
criterion = nn.CrossEntropyLoss().cuda()
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=0.9, weight_decay=1e-4)
if args.epoch == 100:
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50,75,90], gamma = 0.1, verbose = True)
elif args.epoch == 200:
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[100,150], gamma = 0.1, verbose = True)
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
def test(args, epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(valloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(valloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
# directory = "/nobackup/soumya/results/dice/%s/"%(args.name)
directory = os.path.join(f"./checkpoints/{args.id}/resnet50")
if not os.path.exists(directory):
os.makedirs(directory)
filename = os.path.join(directory,'model_best.pth.tar')
torch.save(state, filename)
best_acc = acc
print(f"Training for {args.epoch} epochs")
for epoch in range(start_epoch, start_epoch + args.epoch):
train(epoch)
test(args, epoch)
scheduler.step()
print(f"Best Accuracy :{best_acc}")