-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathget_score.py
223 lines (197 loc) · 9.96 KB
/
get_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import argparse
import os
import logging
import numpy as np
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision
import utils.svhn_loader as svhn
import models.densenet as dn
import models.wideresnet as wn
parser = argparse.ArgumentParser(description='OOD Detection Evaluation based on Energy-score')
parser.add_argument('--in-dataset', default="CIFAR-10", type=str, help='in-distribution dataset')
parser.add_argument('--model-arch', default='densenet', type=str, help='model architecture')
parser.add_argument('--print-freq', '-p', default=10, type=int, help='print frequency (default: 10)') # print every print-freq batches during training
# ID train & val batch size and OOD train batch size
parser.add_argument('-b', '--batch-size', default= 64, type=int,
help='mini-batch size (default: 64) used for training id and ood')
# densenet
parser.add_argument('--layers', default= 100, type=int,
help='total number of layers (default: 100) for DenseNet')
parser.add_argument('--growth', default= 12, type=int,
help='number of new channels per layer (default: 12)')
# network spec
parser.add_argument('--droprate', default=0.0, type=float,
help='dropout probability (default: 0.0)')
parser.add_argument('--no-augment', dest='augment', action='store_false',
help='whether to use standard augmentation (default: True)')
parser.add_argument('--reduce', default=0.5, type=float,
help='compression rate in transition stage (default: 0.5)')
parser.add_argument('--no-bottleneck', dest='bottleneck', action='store_false',
help='To not use bottleneck block')
# ood sampling and mining
parser.add_argument('--ood-batch-size', default= 400, type=int,
help='mini-batch size (default: 400) used for testing')
parser.add_argument('--name', '-n', required=True, type=str,
help='name of experiment')
parser.add_argument('--test_epochs', "-e", default = "90 100", type=str,
help='# epoch to test performance')
parser.add_argument('--log_name',
help='Name of the Log File', type = str, default = "info_val.log")
parser.add_argument('--base-dir', default='output/ood_scores', type=str, help='result directory')
#Device options
parser.add_argument('--gpu-ids', default='0', type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
# Miscs
parser.add_argument('--manualSeed', type=int, help='manual seed')
parser.set_defaults(bottleneck=True)
parser.set_defaults(augment=True)
args = parser.parse_args()
state = {k: v for k, v in args._get_kwargs()}
print(state)
directory = "checkpoints/{in_dataset}/{name}/".format(in_dataset=args.in_dataset, name=args.name)
# Use CUDA
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_ids
torch.manual_seed(1)
np.random.seed(1)
np.random.seed(1)
use_cuda = torch.cuda.is_available()
if use_cuda:
torch.cuda.manual_seed_all(1)
# devices = list(range(torch.cuda.device_count()))
# Random seed
# if args.manualSeed is None:
# args.manualSeed = random.randint(1, 10000)
# torch.manual_seed(args.manualSeed)
# np.random.seed(args.manualSeed)
# if use_cuda:
# torch.cuda.manual_seed_all(args.manualSeed)
def main():
log = logging.getLogger(__name__)
formatter = logging.Formatter('%(asctime)s : %(message)s')
fileHandler = logging.FileHandler(os.path.join(directory, args.log_name), mode='w')
fileHandler.setFormatter(formatter)
streamHandler = logging.StreamHandler()
streamHandler.setFormatter(formatter)
log.setLevel(logging.DEBUG)
log.addHandler(fileHandler)
log.addHandler(streamHandler)
transform_test = transforms.Compose([
transforms.ToTensor(),
])
kwargs = {'num_workers': 4, 'pin_memory': True}
normalizer = transforms.Normalize((125.3/255, 123.0/255, 113.9/255), (63.0/255, 62.1/255.0, 66.7/255.0))
if args.in_dataset == "CIFAR-10":
val_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./datasets/cifar10', train=False, download = True, transform=transform_test),
batch_size=args.batch_size, shuffle=True, **kwargs)
num_classes = 10
elif args.in_dataset == "CIFAR-100":
val_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('./datasets/cifar100', train=False, download = True, transform=transform_test),
batch_size=args.batch_size, shuffle=True, **kwargs)
num_classes = 100
# create model
if args.model_arch == 'densenet':
model = dn.DenseNet3(args.layers, num_classes, normalizer=normalizer)
elif args.model_arch == 'wideresnet':
model = wn.WideResNet(args.depth, num_classes, widen_factor=args.width, dropRate=args.droprate, normalizer=normalizer)
else:
assert False, 'Not supported model arch: {}'.format(args.model_arch)
test_epochs = args.test_epochs.split()
if args.in_dataset == "CIFAR-10" or args.in_dataset == "CIFAR-100":
out_datasets = ['LSUN', 'places365', 'LSUN_resize', 'iSUN', 'dtd', 'SVHN']
# load model and store test results
for test_epoch in test_epochs:
checkpoint = torch.load("./checkpoints/{in_dataset}/{name}/checkpoint_{epochs}.pth.tar".format(in_dataset=args.in_dataset, name=args.name, epochs= test_epoch))
model.load_state_dict(checkpoint['state_dict'])
model.eval()
model.cuda()
save_dir = f"./energy_results/{args.in_dataset}/{args.name}"
if not os.path.exists(save_dir):
os.makedirs(save_dir)
print("processing ID")
id_sum_energy = get_energy(args, model, val_loader, test_epoch, log)
with open(os.path.join(save_dir, f'energy_score_at_epoch_{test_epoch}.npy'), 'wb') as f:
np.save(f, id_sum_energy)
for out_dataset in out_datasets:
print("processing OOD dataset ", out_dataset)
testloaderOut = get_ood_loader(out_dataset)
ood_sum_energy = get_energy(args, model, testloaderOut, test_epoch, log)
with open(os.path.join(save_dir, f'energy_score_{out_dataset}_at_epoch_{test_epoch}.npy'), 'wb') as f:
np.save(f, ood_sum_energy)
def get_energy(args, model, val_loader, epoch, log):
in_energy = AverageMeter()
model.eval()
init = True
log.debug("######## Start collecting energy score ########")
with torch.no_grad():
for i, (images, labels) in enumerate(val_loader):
images = images.cuda()
# labels = labels.cuda().float()
outputs = model(images)
e_s = -torch.logsumexp(outputs, dim=1)
e_s = e_s.data.cpu().numpy()
in_energy.update(e_s.mean(), len(labels)) #DEBUG
if init:
sum_energy = e_s
init = False
else:
sum_energy = np.concatenate((sum_energy, e_s))
if i % args.print_freq == 0:
log.debug('Epoch: [{0}] Batch#[{1}/{2}]\t'
'Energy Sum {in_energy.val:.4f} ({in_energy.avg:.4f})'.format(
epoch, i, len(val_loader), in_energy=in_energy))
return sum_energy
def get_ood_loader(out_dataset):
if out_dataset == 'SVHN':
testsetout = svhn.SVHN('datasets/ood_datasets/svhn/', split='test',
transform=transforms.ToTensor(), download=False)
testloaderOut = torch.utils.data.DataLoader(testsetout, batch_size=args.ood_batch_size,
shuffle=True, num_workers=2)
elif out_dataset == "CIFAR-100":
testloaderOut = torch.utils.data.DataLoader(
datasets.CIFAR100('./datasets/cifar100', train=False, download=False,
transform=transforms.Compose([transforms.Resize(32), transforms.CenterCrop(32), transforms.ToTensor()])
),
batch_size=args.ood_batch_size, shuffle=True, num_workers=2)
elif out_dataset == 'dtd':
testsetout = torchvision.datasets.ImageFolder(root="datasets/ood_datasets/dtd/images",
transform=transforms.Compose([transforms.Resize(32), transforms.CenterCrop(32), transforms.ToTensor()]))
testloaderOut = torch.utils.data.DataLoader(testsetout, batch_size=args.ood_batch_size, shuffle=True,
num_workers=2)
elif out_dataset == 'places365':
testsetout = torchvision.datasets.ImageFolder(root="datasets/ood_datasets/places365",
transform=transforms.Compose([transforms.Resize(32), transforms.CenterCrop(32), transforms.ToTensor()]))
subset = torch.utils.data.Subset(testsetout, np.random.choice(len(testsetout), 10000, replace=False))
testloaderOut = torch.utils.data.DataLoader(subset, batch_size=args.ood_batch_size,
num_workers=2, shuffle=True)
else:
print("Not specified")
testsetout = torchvision.datasets.ImageFolder("datasets/ood_datasets/{}".format(out_dataset),
transform=transforms.Compose([transforms.Resize(32), transforms.CenterCrop(32), transforms.ToTensor()]))
testloaderOut = torch.utils.data.DataLoader(testsetout, batch_size=args.ood_batch_size,
shuffle=True, num_workers=2)
return testloaderOut
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += self.val * n
self.count += n
self.avg = self.sum / self.count
if __name__ == '__main__':
main()