-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_poem.py
351 lines (311 loc) · 15.8 KB
/
train_poem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import argparse
import os
import time
import logging
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import numpy as np
import utils.svhn_loader as svhn
import models.densenet as dn
import models.wideresnet as wn
from neural_linear_opt import NeuralLinear, SimpleDataset
from utils import TinyImages, ImageNet
from tensorboard_logger import configure, log_value
parser = argparse.ArgumentParser(description='Posterior sampling-based outlier mining with enregy-regularized training')
parser.add_argument('--in-dataset', default="CIFAR-10", type=str, help='in-distribution dataset e.g. CIFAR-10')
parser.add_argument('--model-arch', default='densenet', type=str, help='model architecture e.g. simplenet densenet')
parser.add_argument('--save-epoch', default=10, type=int,
help='save the model every save_epoch') # freq; save model state_dict()
parser.add_argument('--print-freq', '-p', default=10, type=int,
help='print frequency (default: 10)') # print every print-freq batches during training
# ID train & val batch size and OOD train batch size
parser.add_argument('-b', '--batch-size', default=64, type=int,
help='mini-batch size (default: 64) used for training id and ood')
# training schedule
parser.add_argument('--start-epoch', default=0, type=int,
help='manual epoch number (useful on restarts)')
parser.add_argument('--epochs', default=100, type=int,
help='number of total epochs to run')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--weight-decay', '--wd', default=0.0001, type=float,
help='weight decay (default: 0.0001)')
# densenet
parser.add_argument('--layers', default=100, type=int,
help='total number of layers (default: 100) for DenseNet')
parser.add_argument('--growth', default=12, type=int,
help='number of new channels per layer (default: 12)')
# wideresnet
parser.add_argument('--depth', default=40, type=int,
help='depth of wide resnet')
parser.add_argument('--width', default=4, type=int,
help='width of resnet')
## network spec
parser.add_argument('--droprate', default=0.0, type=float,
help='dropout probability (default: 0.0)')
parser.add_argument('--no-augment', dest='augment', action='store_false',
help='whether to use standard augmentation (default: True)')
parser.add_argument('--reduce', default=0.5, type=float,
help='compression rate in transition stage (default: 0.5)')
parser.add_argument('--no-bottleneck', dest='bottleneck', action='store_false',
help='To not use bottleneck block')
parser.add_argument('--beta', default=1.0, type=float, help='beta for out_loss')
# ood sampling and mining
parser.add_argument('--ood-batch-size', default=2000, type=int,
help='mini-batch size used for ood mining')
parser.add_argument('--pool-size', default=200, type=int,
help='pool size')
#posterior sampling
parser.add_argument('--a0', type=float, default=6.0, help='a0')
parser.add_argument('--b0', type=float, default=6.0, help='b0')
parser.add_argument('--lambda_prior', type=float, default=0.25, help='lambda_prior')
parser.add_argument('--sigma', type=float, default=20, help='control var for weights')
parser.add_argument('--sigma_n', type=float, default=0.5, help='control var for noise')
parser.add_argument('--conf', type=float, default=3.0, help='control ground truth for bayesian linear regression. 2.95--0.05; 3.9--0.98; 4.6 --0.99; 6.9--0.999')
# saving, naming and logging
parser.add_argument('--resume', default='', type=str,
help='path to latest checkpoint (default: none)')
parser.add_argument('--auxiliary-dataset', default='imagenet',
choices=['imagenet','80m_tiny_images'], type=str, help='which auxiliary dataset to use')
parser.add_argument('--name', required = True, type=str,
help='name of experiment')
parser.add_argument('--log_name',
help='Name of the Log File', type = str, default = "info.log")
parser.add_argument('--ood_factor', type=float, default=1,
help='ood_dataset_size = len(train_loader.dataset) * ood_factor')
parser.add_argument('--tensorboard',
help='Log progress to TensorBoard', action='store_true')
#Device options
parser.add_argument('--gpu-ids', default='0', type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
parser.add_argument('--energy_model', default='True', type=bool,
help='if use energy model')
parser.add_argument('--debug', default='True', type=bool,
help='if in debug mode')
parser.add_argument('--m_in', type=float, default=-25., help='default: -25. margin for in-distribution; above this value will be penalized')
parser.add_argument('--m_out', type=float, default=-7., help='default: -7. margin for out-distribution; below this value will be penalized')
parser.add_argument('--energy_beta', default=0.1, type=float, help='beta for energy fine tuning loss')
parser.add_argument('--BUF_SIZE', type= int, default=4, help='# of data points (measured w.r.t. # of epochs) used for posterior update')
parser.set_defaults(bottleneck=True)
parser.set_defaults(augment=True)
args = parser.parse_args()
directory = "checkpoints/{in_dataset}/{name}/".format(in_dataset=args.in_dataset, name=args.name)
if not os.path.exists(directory):
os.makedirs(directory)
save_state_file = os.path.join(directory, 'train_args.txt')
fw = open(save_state_file, 'w')
state = {k: v for k, v in args._get_kwargs()}
print(state, file=fw)
fw.close()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_ids
torch.manual_seed(1)
np.random.seed(1)
def main():
if args.tensorboard: configure("runs/%s"%(args.name))
log = logging.getLogger(__name__)
formatter = logging.Formatter('%(asctime)s : %(message)s')
fileHandler = logging.FileHandler(os.path.join(directory, args.log_name), mode='w')
fileHandler.setFormatter(formatter)
streamHandler = logging.StreamHandler()
streamHandler.setFormatter(formatter)
log.setLevel(logging.DEBUG)
log.addHandler(fileHandler)
log.addHandler(streamHandler)
if args.augment:
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
transforms.ToTensor(),
])
else:
transform_train = transforms.Compose([
transforms.ToTensor(),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
])
state = {k: v for k, v in args._get_kwargs()}
log.debug(state)
kwargs = {'num_workers': 4, 'pin_memory': True}
if args.in_dataset == "CIFAR-10":
# Data loading code
normalizer = transforms.Normalize(mean=[x/255.0 for x in [125.3, 123.0, 113.9]],
std=[x/255.0 for x in [63.0, 62.1, 66.7]])
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./datasets/cifar10', train=True, download=True,
transform=transform_train),
batch_size=args.batch_size, shuffle=True, **kwargs)
val_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./datasets/cifar10', train=False, transform=transform_test),
batch_size=args.batch_size, shuffle=True, **kwargs)
lr_schedule=[50, 75, 90]
num_classes = 10
pool_size = args.pool_size
elif args.in_dataset == "CIFAR-100":
# Data loading code
normalizer = transforms.Normalize(mean=[x/255.0 for x in [125.3, 123.0, 113.9]],
std=[x/255.0 for x in [63.0, 62.1, 66.7]])
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('./datasets/cifar100', train=True, download=True,
transform=transform_train),
batch_size=args.batch_size, shuffle=True, **kwargs)
val_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('./datasets/cifar100', train=False, transform=transform_test),
batch_size=args.batch_size, shuffle=True, **kwargs)
if args.epochs == 200:
lr_schedule= [60, 120, 180]
elif args.epochs == 100:
lr_schedule=[50, 75, 90]
num_classes = 100
pool_size = args.pool_size
elif args.in_dataset == "SVHN":
# Data loading code
normalizer = None
train_loader = torch.utils.data.DataLoader(
svhn.SVHN('datasets/svhn/', split='train',
transform=transforms.ToTensor(), download=False),
batch_size=args.batch_size, shuffle=True, **kwargs)
val_loader = torch.utils.data.DataLoader(
svhn.SVHN('datasets/svhn/', split='test',
transform=transforms.ToTensor(), download=False),
batch_size=args.batch_size, shuffle=False, **kwargs)
args.save_epoch = 5
lr_schedule=[10, 15, 18]
pool_size = args.pool_size
num_classes = 10
ood_dataset_size = int(len(train_loader.dataset) * args.ood_factor)
print('OOD Dataset Size: ', ood_dataset_size)
if args.auxiliary_dataset == '80m_tiny_images':
ood_loader = torch.utils.data.DataLoader(
TinyImages(transform=transforms.Compose(
[transforms.ToTensor(), transforms.ToPILImage(), transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(), transforms.ToTensor()])),
batch_size=args.ood_batch_size, shuffle=False, **kwargs)
elif args.auxiliary_dataset == 'imagenet':
ood_loader = torch.utils.data.DataLoader(
ImageNet(transform=transforms.Compose(
[transforms.ToTensor(), transforms.ToPILImage(), transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(), transforms.ToTensor()])),
batch_size=args.ood_batch_size, shuffle=False, **kwargs)
# create model
if args.model_arch == 'densenet':
model = dn.DenseNet3(args.layers, num_classes, args.growth, reduction=args.reduce,
bottleneck=args.bottleneck, dropRate=args.droprate, normalizer=normalizer)
elif args.model_arch == 'wideresnet':
model = wn.WideResNet(args.depth, num_classes + 1, widen_factor=args.width, dropRate=args.droprate, normalizer=normalizer)
else:
assert False, 'Not supported model arch: {}'.format(args.model_arch)
repr_dim = model.repr_dim
model = model.cuda()
bayes_nn = NeuralLinear(args, model, repr_dim, output_dim = 1)
cudnn.benchmark = True
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
nesterov=True,
weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
#Start Training
bayes_nn.sample_BDQN()
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch, lr_schedule)
selected_ood_loader = select_ood_opt(ood_loader, model, bayes_nn, args.batch_size * args.ood_factor,
num_classes, pool_size, ood_dataset_size)
bayes_nn.train_blr(train_loader, selected_ood_loader, criterion, optimizer, epoch, directory, log, args.energy_model)
bayes_nn.update_representation()
bayes_nn.update_bays_reg_BDQN(log)
bayes_nn.sample_BDQN()
# evaluate on validation set
prec1 = bayes_nn.validate(val_loader, model, criterion, epoch, log, args.energy_model)
# remember best prec@1 and save checkpoint
if (epoch + 1) % args.save_epoch == 0 and (epoch + 1) >= 80:
# data parallel save
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
}, epoch + 1)
def select_ood_opt(ood_loader, model, ood_branch, batch_size, num_classes, pool_size, ood_dataset_size):
# start at a random point of the outlier dataset; this induces more randomness without obliterating locality
offset = np.random.randint(len(ood_loader.dataset))
while offset>=0 and offset<10000:
offset = np.random.randint(len(ood_loader.dataset))
ood_loader.dataset.offset = offset
out_iter = iter(ood_loader)
print('Start selecting OOD samples...')
# select ood samples
model.eval()
with torch.no_grad():
all_ood_input = torch.empty(0,3,32,32)
all_abs_val = torch.empty(0)
duration = 0
init_start = time.time()
for k in range(pool_size):
start = time.time()
try:
out_set = next(out_iter)
except StopIteration:
offset = np.random.randint(len(ood_loader.dataset))
while offset>=0 and offset<10000:
offset = np.random.randint(len(ood_loader.dataset))
ood_loader.dataset.offset = offset
out_iter = iter(ood_loader)
out_set = next(out_iter)
input = out_set[0]
output = ood_branch.predict(input.cuda())
abs_val = torch.abs(output).squeeze()
duration += time.time() - start
all_ood_input = torch.cat((all_ood_input, input), dim = 0)
all_abs_val = torch.cat((all_abs_val, abs_val.detach().cpu()), dim = 0)
print('Scanning Time: ', duration)
_, selected_indices = torch.topk(all_abs_val, ood_dataset_size, largest=False)
print('Total OOD samples: ', len(selected_indices))
ood_images = all_ood_input[selected_indices]
ood_labels = (torch.ones(ood_dataset_size) * num_classes).long()
ood_train_loader = torch.utils.data.DataLoader(
SimpleDataset(ood_images, ood_labels),
batch_size=batch_size, shuffle=True, num_workers = 2)
print('Time: ', time.time()-init_start)
return ood_train_loader
def adjust_learning_rate(optimizer, epoch, lr_schedule=[50, 75, 90]):
"""Sets the learning rate to the initial LR decayed by 10 after 40 and 80 epochs"""
lr = args.lr
if epoch >= lr_schedule[0]:
lr *= 0.1
if epoch >= lr_schedule[1]:
lr *= 0.1
if epoch >= lr_schedule[2]:
lr *= 0.1
# log to TensorBoard
if args.tensorboard:
log_value('learning_rate', lr, epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def save_checkpoint(state, epoch):
"""Saves checkpoint to disk"""
directory = "checkpoints/{in_dataset}/{name}/".format(in_dataset=args.in_dataset, name=args.name)
if not os.path.exists(directory):
os.makedirs(directory)
filename = directory + 'checkpoint_{}.pth.tar'.format(epoch)
torch.save(state, filename)
if __name__ == '__main__':
main()