@@ -171,10 +171,7 @@ def get_dataloader_and_buffer(_data, _params):
171171 ) # None sampler will lead to a premature stop iteration. Replacement should be True in attribute of the sampler to produce expected number of items in one iteration.
172172 _dataloader = DataLoader (
173173 _data ,
174- batch_sampler = paddle .io .BatchSampler (
175- sampler = _sampler ,
176- drop_last = False ,
177- ),
174+ batch_size = 1 ,
178175 num_workers = NUM_WORKERS
179176 if dist .is_available ()
180177 else 0 , # setting to 0 diverges the behavior of its iterator; should be >=1
@@ -325,17 +322,18 @@ def get_lr(lr_params):
325322 self .validation_data ,
326323 self .valid_numb_batch ,
327324 ) = get_data_loader (training_data , validation_data , training_params )
328- training_data .print_summary (
329- "training" ,
330- to_numpy_array (self .training_dataloader .batch_sampler .sampler .weights ),
331- )
332- if validation_data is not None :
333- validation_data .print_summary (
334- "validation" ,
335- to_numpy_array (
336- self .validation_dataloader .batch_sampler .sampler .weights
337- ),
338- )
325+ # no sampler, do not need print!
326+ # training_data.print_summary(
327+ # "training",
328+ # to_numpy_array(self.training_dataloader.batch_sampler.sampler.weights),
329+ # )
330+ # if validation_data is not None:
331+ # validation_data.print_summary(
332+ # "validation",
333+ # to_numpy_array(
334+ # self.validation_dataloader.batch_sampler.sampler.weights
335+ # ),
336+ # )
339337 else :
340338 (
341339 self .training_dataloader ,
@@ -370,27 +368,27 @@ def get_lr(lr_params):
370368 validation_data [model_key ],
371369 training_params ["data_dict" ][model_key ],
372370 )
373-
374- training_data [model_key ].print_summary (
375- f"training in { model_key } " ,
376- to_numpy_array (
377- self .training_dataloader [
378- model_key
379- ].batch_sampler .sampler .weights
380- ),
381- )
382- if (
383- validation_data is not None
384- and validation_data [model_key ] is not None
385- ):
386- validation_data [model_key ].print_summary (
387- f"validation in { model_key } " ,
388- to_numpy_array (
389- self .validation_dataloader [
390- model_key
391- ].batch_sampler .sampler .weights
392- ),
393- )
371+ # no sampler, do not need print!
372+ # training_data[model_key].print_summary(
373+ # f"training in {model_key}",
374+ # to_numpy_array(
375+ # self.training_dataloader[
376+ # model_key
377+ # ].batch_sampler.sampler.weights
378+ # ),
379+ # )
380+ # if (
381+ # validation_data is not None
382+ # and validation_data[model_key] is not None
383+ # ):
384+ # validation_data[model_key].print_summary(
385+ # f"validation in {model_key}",
386+ # to_numpy_array(
387+ # self.validation_dataloader[
388+ # model_key
389+ # ].batch_sampler.sampler.weights
390+ # ),
391+ # )
394392
395393 # Learning rate
396394 self .warmup_steps = training_params .get ("warmup_steps" , 0 )
@@ -856,7 +854,9 @@ def log_loss_valid(_task_key="Default"):
856854
857855 if not self .multi_task :
858856 train_results = log_loss_train (loss , more_loss )
859- valid_results = log_loss_valid ()
857+ # valid_results = log_loss_valid()
858+ # no run valid!
859+ valid_results = None
860860 if self .rank == 0 :
861861 log .info (
862862 format_training_message_per_task (
0 commit comments