We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
The energy and force Errors for training using Atom type embedding are large.
2.0.0.b0, conda
{ "model": { "type_map": [ "S" ], "type_embedding":{ "neuron": [2, 4, 8], "resnet_dt": false, "seed": 1 }, "descriptor": { "type": "se_a_tpe", "sel": [ 128 ], "rcut_smth": 0.5, "rcut": 6.5, "neuron": [ 25, 50, 100 ], "resnet_dt": false, "axis_neuron": 16, "seed": 722586222 }, "fitting_net": { "neuron": [ 240, 240, 240, 240 ], "resnet_dt": true, "seed": 711230366 } }, "learning_rate": { "type": "exp", "start_lr": 0.001, "decay_steps": 5000, "stop_lr": 3.51e-8 }, "loss": { "type":"ener", "start_pref_e": 0.02, "limit_pref_e": 1, "start_pref_f": 1000, "limit_pref_f": 1, "start_pref_v": 0.0, "limit_pref_v": 0.0 }, "training": { "seed": 10, "disp_file": "lcurve.out", "stop_batch": 1000000, "disp_freq": 1000, "numb_test": 5, "save_freq": 1000, "save_ckpt": "model.ckpt", "profiling": false, "profiling_file": "timeline.json", "training_data": { "systems": ["../data.iters/iter.000000/02.fp/data.002", "../data.iters/iter.000000/02.fp/data.032", "../data.iters/iter.000000/02.fp/data.000", "../data.iters/iter.000000/02.fp/data.034", "../data.iters/iter.000001/02.fp/data.004", "../data.iters/iter.000001/02.fp/data.036", "../data.iters/iter.000001/02.fp/data.006", "../data.iters/iter.000001/02.fp/data.038", "../data.iters/iter.000002/02.fp/data.016", "../data.iters/iter.000002/02.fp/data.048", "../data.iters/iter.000002/02.fp/data.018", "../data.iters/iter.000002/02.fp/data.050", "../data.iters/iter.000003/02.fp/data.022", "../data.iters/iter.000003/02.fp/data.054", "../data.iters/iter.000003/02.fp/data.052", "../data.iters/iter.000003/02.fp/data.020", "../data.iters/iter.000004/02.fp/data.058", "../data.iters/iter.000004/02.fp/data.024", "../data.iters/iter.000004/02.fp/data.026", "../data.iters/iter.000004/02.fp/data.056", "../data.iters/iter.000005/02.fp/data.060", "../data.iters/iter.000005/02.fp/data.028", "../data.iters/iter.000005/02.fp/data.030", "../data.iters/iter.000005/02.fp/data.062", "../data.iters/iter.000006/02.fp/data.010", "../data.iters/iter.000006/02.fp/data.008", "../data.iters/iter.000006/02.fp/data.042", "../data.iters/iter.000006/02.fp/data.040", "../data.iters/iter.000007/02.fp/data.044", "../data.iters/iter.000007/02.fp/data.014", "../data.iters/iter.000007/02.fp/data.046", "../data.iters/iter.000007/02.fp/data.012"], "batch_size": 1 }, "validation_data":{ "systems": ["../data.iters/iter.000000/02.fp/data.002", "../data.iters/iter.000000/02.fp/data.032", "../data.iters/iter.000000/02.fp/data.000", "../data.iters/iter.000000/02.fp/data.034", "../data.iters/iter.000001/02.fp/data.004", "../data.iters/iter.000001/02.fp/data.036", "../data.iters/iter.000001/02.fp/data.006", "../data.iters/iter.000001/02.fp/data.038", "../data.iters/iter.000002/02.fp/data.016", "../data.iters/iter.000002/02.fp/data.048", "../data.iters/iter.000002/02.fp/data.018", "../data.iters/iter.000002/02.fp/data.050", "../data.iters/iter.000003/02.fp/data.022", "../data.iters/iter.000003/02.fp/data.054", "../data.iters/iter.000003/02.fp/data.052", "../data.iters/iter.000003/02.fp/data.020", "../data.iters/iter.000004/02.fp/data.058", "../data.iters/iter.000004/02.fp/data.024", "../data.iters/iter.000004/02.fp/data.026", "../data.iters/iter.000004/02.fp/data.056", "../data.iters/iter.000005/02.fp/data.060", "../data.iters/iter.000005/02.fp/data.028", "../data.iters/iter.000005/02.fp/data.030", "../data.iters/iter.000005/02.fp/data.062", "../data.iters/iter.000006/02.fp/data.010", "../data.iters/iter.000006/02.fp/data.008", "../data.iters/iter.000006/02.fp/data.042", "../data.iters/iter.000006/02.fp/data.040", "../data.iters/iter.000007/02.fp/data.044", "../data.iters/iter.000007/02.fp/data.014", "../data.iters/iter.000007/02.fp/data.046", "../data.iters/iter.000007/02.fp/data.012"], "batch_size": 1, "numb_btch": 3, "_comment": "that's all" }, "_comment": "that's all" } }
lcurve.out
step rmse_val rmse_trn rmse_e_val rmse_e_trn rmse_f_val rmse_f_trn lr 0 4.64e+02 4.64e+02 2.90e+02 2.90e+02 9.26e-01 8.04e-01 1.0e-03 1000 2.75e+01 3.01e+01 4.40e-02 4.74e-02 8.69e-01 9.51e-01 1.0e-03 2000 2.86e+01 3.14e+01 2.69e-02 4.51e-02 9.03e-01 9.93e-01 1.0e-03 .................. 163000 1.29e+01 1.28e+01 1.86e-02 2.95e-02 9.28e-01 9.14e-01 1.9e-04 164000 1.27e+01 1.42e+01 4.62e-02 4.76e-02 9.07e-01 1.02e+00 1.9e-04 165000 1.33e+01 1.14e+01 2.72e-02 1.08e-02 9.79e-01 8.40e-01 1.8e-04 166000 1.16e+01 1.25e+01 9.23e-02 7.24e-02 8.52e-01 9.21e-01 1.8e-04 167000 1.23e+01 1.14e+01 2.35e-02 6.55e-02 9.04e-01 8.38e-01 1.8e-04 168000 1.20e+01 1.41e+01 4.60e-02 1.97e-02 8.82e-01 1.04e+00 1.8e-04 169000 1.17e+01 1.18e+01 2.20e-02 3.75e-02 8.63e-01 8.65e-01 1.8e-04 170000 1.13e+01 1.00e+01 3.51e-02 9.29e-02 8.55e-01 7.52e-01 1.7e-04 171000 1.22e+01 1.06e+01 3.65e-02 1.23e-02 9.17e-01 7.98e-01 1.7e-04 172000 1.18e+01 1.10e+01 5.21e-02 2.40e-02 8.92e-01 8.29e-01 1.7e-04 173000 1.17e+01 1.13e+01 5.59e-02 2.00e-02 8.83e-01 8.54e-01 1.7e-04 174000 1.24e+01 1.10e+01 7.28e-02 7.33e-02 9.30e-01 8.31e-01 1.7e-04 175000 1.14e+01 1.25e+01 7.05e-02 5.81e-02 8.83e-01 9.64e-01 1.7e-04 176000 1.07e+01 1.23e+01 5.51e-02 2.85e-02 8.24e-01 9.48e-01 1.7e-04 177000 1.13e+01 1.18e+01 7.20e-02 4.19e-02 8.71e-01 9.11e-01 1.7e-04 178000 1.12e+01 1.11e+01 5.49e-02 1.91e-02 8.63e-01 8.60e-01 1.7e-04 179000 1.20e+01 1.04e+01 4.85e-02 3.96e-02 9.28e-01 8.04e-01 1.7e-04 180000 1.19e+01 1.19e+01 6.74e-02 1.78e-02 9.37e-01 9.48e-01 1.6e-04 181000 1.15e+01 1.17e+01 8.61e-02 1.21e-03 9.07e-01 9.26e-01 1.6e-04 182000 1.13e+01 1.04e+01 3.48e-02 1.01e-02 8.94e-01 8.22e-01 1.6e-04 183000 1.05e+01 1.10e+01 3.94e-02 6.62e-02 8.35e-01 8.75e-01 1.6e-04 184000 1.16e+01 1.14e+01 2.73e-02 8.72e-02 9.24e-01 9.01e-01 1.6e-04
The text was updated successfully, but these errors were encountered:
Could you please follow the example for the type embedding? Especially the type of the descriptor. https://github.com/deepmodeling/deepmd-kit/blob/devel/examples/water/se_e2_a_tebd/input.json
type
descriptor
For the case of water, one write
"type_embedding":{ "neuron": [2, 4, 8], "resnet_dt": false, "seed": 1 }, "descriptor" :{ "type": "se_e2_a", "sel": [46, 92], "rcut_smth": 0.50, "rcut": 6.00, "neuron": [25, 50, 100], "resnet_dt": false, "axis_neuron": 16, "type_one_side": true, "seed": 1, "_comment": " that's all" },
The type_embedding will automatically be used in the descriptor with type "se_e2_a", which is equivalent to the old one "se_a"
type_embedding
"se_e2_a"
"se_a"
Sorry, something went wrong.
Hi Manyi, could you patch #1592 and see if it works for you?
No branches or pull requests
>Summary
The energy and force Errors for training using Atom type embedding are large.
>Deepmd-kit version input.json lcurve.out
2.0.0.b0, conda
>input.json
step rmse_val rmse_trn rmse_e_val rmse_e_trn rmse_f_val rmse_f_trn lr
0 4.64e+02 4.64e+02 2.90e+02 2.90e+02 9.26e-01 8.04e-01 1.0e-03
1000 2.75e+01 3.01e+01 4.40e-02 4.74e-02 8.69e-01 9.51e-01 1.0e-03
2000 2.86e+01 3.14e+01 2.69e-02 4.51e-02 9.03e-01 9.93e-01 1.0e-03
..................
163000 1.29e+01 1.28e+01 1.86e-02 2.95e-02 9.28e-01 9.14e-01 1.9e-04
164000 1.27e+01 1.42e+01 4.62e-02 4.76e-02 9.07e-01 1.02e+00 1.9e-04
165000 1.33e+01 1.14e+01 2.72e-02 1.08e-02 9.79e-01 8.40e-01 1.8e-04
166000 1.16e+01 1.25e+01 9.23e-02 7.24e-02 8.52e-01 9.21e-01 1.8e-04
167000 1.23e+01 1.14e+01 2.35e-02 6.55e-02 9.04e-01 8.38e-01 1.8e-04
168000 1.20e+01 1.41e+01 4.60e-02 1.97e-02 8.82e-01 1.04e+00 1.8e-04
169000 1.17e+01 1.18e+01 2.20e-02 3.75e-02 8.63e-01 8.65e-01 1.8e-04
170000 1.13e+01 1.00e+01 3.51e-02 9.29e-02 8.55e-01 7.52e-01 1.7e-04
171000 1.22e+01 1.06e+01 3.65e-02 1.23e-02 9.17e-01 7.98e-01 1.7e-04
172000 1.18e+01 1.10e+01 5.21e-02 2.40e-02 8.92e-01 8.29e-01 1.7e-04
173000 1.17e+01 1.13e+01 5.59e-02 2.00e-02 8.83e-01 8.54e-01 1.7e-04
174000 1.24e+01 1.10e+01 7.28e-02 7.33e-02 9.30e-01 8.31e-01 1.7e-04
175000 1.14e+01 1.25e+01 7.05e-02 5.81e-02 8.83e-01 9.64e-01 1.7e-04
176000 1.07e+01 1.23e+01 5.51e-02 2.85e-02 8.24e-01 9.48e-01 1.7e-04
177000 1.13e+01 1.18e+01 7.20e-02 4.19e-02 8.71e-01 9.11e-01 1.7e-04
178000 1.12e+01 1.11e+01 5.49e-02 1.91e-02 8.63e-01 8.60e-01 1.7e-04
179000 1.20e+01 1.04e+01 4.85e-02 3.96e-02 9.28e-01 8.04e-01 1.7e-04
180000 1.19e+01 1.19e+01 6.74e-02 1.78e-02 9.37e-01 9.48e-01 1.6e-04
181000 1.15e+01 1.17e+01 8.61e-02 1.21e-03 9.07e-01 9.26e-01 1.6e-04
182000 1.13e+01 1.04e+01 3.48e-02 1.01e-02 8.94e-01 8.22e-01 1.6e-04
183000 1.05e+01 1.10e+01 3.94e-02 6.62e-02 8.35e-01 8.75e-01 1.6e-04
184000 1.16e+01 1.14e+01 2.73e-02 8.72e-02 9.24e-01 9.01e-01 1.6e-04
The text was updated successfully, but these errors were encountered: