forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdocument.py
176 lines (143 loc) · 5.53 KB
/
document.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import numpy as np
class Topic(object):
"""Basic data structure of topic, contains topic id and
corresponding probability.
"""
def __init__(self, tid, prob):
self.tid = tid # topic id
self.prob = prob # topic probability
class Token(object):
"""Basic storage unit of LDA documents, contains word id
and corresponding topic.
"""
def __init__(self, topic, id):
self.topic = topic
self.id = id
class Sentence(object):
"""Basic storage unit of SentenceLDA documents, contains word ids
of the sentence and its corresponding topic id.
"""
def __init__(self, topic, tokens):
self.topic = topic
self.tokens = tokens
class LDADoc(object):
"""The storage structure of LDA model's inference result.
"""
def __init__(self):
self._num_topics = None # Number of topics.
self._num_accum = None # Number of accumulated sample rounds.
self._alpha = None # Document prior parameter.
self._tokens = None # Storage structure of inference results.
self._topic_sum = None # Document's topic sum in one round samples.
self._accum_topic_sum = None # Accumulated results of topic sum.
def init(self, num_topics):
"""Initialize the LDADoc according to num_topics.
"""
self._num_topics = num_topics
self._num_accum = 0
self._tokens = []
self._topic_sum = np.zeros(self._num_topics)
self._accum_topic_sum = np.zeros(self._num_topics)
def add_token(self, token):
"""Add new word to current LDADoc.
Arg:
token: Token class object.
"""
assert token.topic >= 0, "Topic %d out of range!" % token.topic
assert token.topic < self._num_topics, "Topic %d out of range!" % token.topic
self._tokens.append(token)
self._topic_sum[token.topic] += 1
def token(self, index):
return self._tokens[index]
def set_topic(self, index, new_topic):
"""Set the index word's topic to new_topic, and update the corresponding
topic distribution.
"""
assert new_topic >= 0, "Topic %d out of range!" % new_topic
assert new_topic < self._num_topics, "Topic %d out of range!" % new_topic
old_topic = self._tokens[index].topic
if new_topic == old_topic:
return
self._tokens[index].topic = new_topic
self._topic_sum[old_topic] -= 1
self._topic_sum[new_topic] += 1
def set_alpha(self, alpha):
self._alpha = alpha
def size(self):
"""Return number of words in LDADoc.
"""
return len(self._tokens)
def topic_sum(self, topic_id):
return self._topic_sum[topic_id]
def sparse_topic_dist(self, sort=True):
"""Return the topic distribution of documents in sparse format.
By default, it is sorted according to the topic probability
under the descending order.
"""
topic_dist = []
sum_ = np.sum(self._accum_topic_sum)
if sum_ == 0:
return topic_dist
for i in range(0, self._num_topics):
if self._accum_topic_sum[i] == 0:
continue
topic_dist.append(Topic(i, self._accum_topic_sum[i] * 1.0 / sum_))
if sort:
def take_elem(topic):
return topic.prob
topic_dist.sort(key=take_elem, reverse=True)
if topic_dist is None:
topic_dist = []
return topic_dist
def dense_topic_dist(self):
"""Return the distribution of document topics in dense format,
taking into account the prior parameter alpha.
"""
dense_dist = np.zeros(self._num_topics)
if self.size() == 0:
return dense_dist
dense_dist = (self._accum_topic_sum * 1.0 / self._num_accum + self._alpha) / (
self.size() + self._alpha * self._num_topics)
return dense_dist
def accumulate_topic_num(self):
self._accum_topic_sum += self._topic_sum
self._num_accum += 1
class SLDADoc(LDADoc):
"""Sentence LDA Document, inherited from LDADoc.
Add add_sentence interface.
"""
def __init__(self):
super().__init__()
self.__sentences = None
def init(self, num_topics):
"""Initialize the SLDADoc according to num_topics.
"""
self._num_topics = num_topics
self.__sentences = []
self._num_accum = 0
self._topic_sum = np.zeros(self._num_topics)
self._accum_topic_sum = np.zeros(self._num_topics)
def add_sentence(self, sent):
"""Add new sentence to current SLDADoc.
Arg:
sent: Sentence class object.
"""
assert sent.topic >= 0, "Topic %d out of range!" % (sent.topic)
assert sent.topic < self._num_topics, "Topic %d out of range!" % (sent.topic)
self.__sentences.append(sent)
self._topic_sum[sent.topic] += 1
def set_topic(self, index, new_topic):
assert new_topic >= 0, "Topic %d out of range!" % (new_topic)
assert new_topic < self._num_topics, "Topic %d out of range!" % (new_topic)
old_topic = self.__sentences[index].topic
if new_topic == old_topic:
return
self.__sentences[index].topic = new_topic
self._topic_sum[old_topic] -= 1
self._topic_sum[new_topic] += 1
def size(self):
"""Return number of sentences in SLDADoc.
"""
return len(self.__sentences)
def sent(self, index):
return self.__sentences[index]