forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_engine.py
91 lines (76 loc) · 3.11 KB
/
inference_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os
from paddlehub.common.logger import logger
from lda_novel.config import ModelConfig
from lda_novel.util import load_prototxt, fix_random_seed, rand_k
from lda_novel.model import TopicModel
from lda_novel.sampler import GibbsSampler, MHSampler
from lda_novel.document import LDADoc, SLDADoc, Token, Sentence
from lda_novel.vocab import OOV
class SamplerType:
GibbsSampling = 0
MetropolisHastings = 1
class InferenceEngine(object):
def __init__(self, model_dir, conf_file, type=SamplerType.MetropolisHastings):
# Read model configuration.
config = ModelConfig()
conf_file_path = os.path.join(model_dir, conf_file)
load_prototxt(conf_file_path, config)
self.__model = TopicModel(model_dir, config)
self.__config = config
# Initialize the sampler according to the configuration.
if type == SamplerType.GibbsSampling:
self.__sampler = GibbsSampler(self.__model)
elif type == SamplerType.MetropolisHastings:
self.__sampler = MHSampler(self.__model)
def infer(self, input, doc):
"""Perform LDA topic inference on input, and store the results in doc.
Args:
input: a list of strings after tokenization.
doc: LDADoc type or SLDADoc type.
"""
fix_random_seed()
if isinstance(doc, LDADoc) and not isinstance(doc, SLDADoc):
doc.init(self.__model.num_topics())
doc.set_alpha(self.__model.alpha())
for token in input:
id_ = self.__model.term_id(token)
if id_ != OOV:
init_topic = rand_k(self.__model.num_topics())
doc.add_token(Token(init_topic, id_))
self.lda_infer(doc, 20, 50)
elif isinstance(doc, SLDADoc):
doc.init(self.__model.num_topics())
doc.set_alpha(self.__model.alpha())
for sent in input:
words = []
for token in sent:
id_ = self.__model.term_id(token)
if id_ != OOV:
words.append(id_)
init_topic = rand_k(self.__model.num_topics())
doc.add_sentence(Sentence(init_topic, words))
self.slda_infer(doc, 20, 50)
else:
logger.error("Wrong Doc Type!")
def lda_infer(self, doc, burn_in_iter, total_iter):
assert burn_in_iter >= 0
assert total_iter > 0
assert total_iter > burn_in_iter
for iter_ in range(total_iter):
self.__sampler.sample_doc(doc)
if iter_ >= burn_in_iter:
doc.accumulate_topic_num()
def slda_infer(self, doc, burn_in_iter, total_iter):
assert burn_in_iter >= 0
assert total_iter > 0
assert total_iter > burn_in_iter
for iter_ in range(total_iter):
self.__sampler.sample_doc(doc)
if iter_ >= burn_in_iter:
doc.accumulate_topic_num()
def model_type(self):
return self.__model.type()
def get_model(self):
return self.__model
def get_config(self):
return self.__config