-
Notifications
You must be signed in to change notification settings - Fork 12
/
KeysetTest.h
792 lines (606 loc) · 22 KB
/
KeysetTest.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
//-----------------------------------------------------------------------------
// Keyset tests generate various sorts of difficult-to-hash keysets and compare
// the distribution and collision frequency of the hash results against an
// ideal random distribution
// The sanity checks are also in this cpp/h
#pragma once
#include "Types.h"
#include "Stats.h"
#include "Random.h" // for rand_p
#include "HashFunc.h"
#include "TAP.h"
#include <algorithm> // for std::swap
#include <assert.h>
//-----------------------------------------------------------------------------
// Sanity tests
//-----------------------------------------------------------------------------
// This should hopefully be a thorough and uambiguous test of whether a hash
// is correctly implemented on a given platform
template <typename hashtype>
bool VerificationTest ( hashfunc<hashtype> hash, uint32_t expected, int verbose, const char *name )
{
const int hashbytes = sizeof(hashtype);
uint8_t * key = new uint8_t[256];
uint8_t * hashes = new uint8_t[hashbytes * 256];
uint8_t * final = new uint8_t[hashbytes];
Rand r(1);
memset(key,0,256);
memset(hashes,0,hashbytes*256);
memset(final,0,hashbytes);
// Hash keys of the form {0}, {0,1}, {0,1,2}... up to N=255,
// using the RNG for seeding.
for(int i = 0; i < 256; i++)
{
key[i] = (uint8_t)i;
hash.seed_state_rand(r);
hash(key,i,&hashes[i*hashbytes]);
}
// Then hash the result array
hash.seed_state_rand(r);
hash(hashes,hashbytes*256,final);
// The first four bytes of that hash, interpreted as a little-endian integer, is our
// verification value
uint32_t verification = (final[0] << 0) | (final[1] << 8) | (final[2] << 16) | (final[3] << 24);
delete [] key;
delete [] hashes;
delete [] final;
bool different = expected != verification;
bool result = !different || !verification;
if (verbose>1)
ok(result, "Verification code", name);
//----------
#define _NAMEFMT "# %-20s"
if (verbose) {
if (different) {
if (result) {
printf(_NAMEFMT " - Verification value 0x%08X : Failed! (Dev-Mode)\n", name, verification);
} else {
printf(_NAMEFMT " - Verification value 0x%08X : Failed! (Expected 0x%08X)\n",
name, verification, expected);
}
} else if (verbose > 1) {
printf(_NAMEFMT " - Verification value 0x%08X : Passed.\n",
name, verification);
}
}
return result;
}
//----------------------------------------------------------------------------
// Basic sanity checks -
// A hash function should not be reading outside the bounds of the key.
// Flipping a bit of a key should, with overwhelmingly high probability,
// result in a different hash.
// Hashing the same key twice should always produce the same result.
// The memory alignment of the key should not affect the hash result.
template <typename hashtype>
bool SanityTest ( hashfunc<hashtype> hash )
{
Rand r(883741);
bool result = true;
const int hashbytes = sizeof(hashtype);
const int reps = 10;
const int keymax = 256;
const int pad = 16;
const int buflen = keymax + pad*3;
uint8_t * buffer1 = new uint8_t[buflen];
uint8_t * buffer2 = new uint8_t[buflen];
uint8_t * hash1 = new uint8_t[hashbytes];
uint8_t * hash2 = new uint8_t[hashbytes];
uint32_t count_inconsistent = 0;
uint32_t count_same = 0;
uint32_t count = 0;
//----------
printf("# Sanity check simple key bit flips and consistency - hashbytes=%d",hashbytes);
for(int irep = 0; result && irep < reps; irep++)
{
if(irep % (reps/10) == 0) printf(".");
hash.seed_state_rand(r);
for(int len = 4; result && len <= keymax; len++)
{
for(int offset = pad; result && offset < pad*2; offset++)
{
uint8_t * key1 = &buffer1[pad];
uint8_t * key2 = &buffer2[pad+offset];
r.rand_p(buffer1,buflen);
r.rand_p(buffer2,buflen);
memcpy(key2,key1,len);
hash(key1,len,hash1);
for(int bit = 0; bit < (len * 8); bit++)
{
// Flip a bit, hash the key -> we should get a different result.
flipbit(key2,len,bit);
hash(key2,len,hash2);
count++;
if(memcmp(hash1,hash2,hashbytes) == 0)
{
result = false;
count_same ++;
}
// Flip it back, hash again -> we should get the original result.
flipbit(key2,len,bit);
hash(key2,len,hash2);
if(memcmp(hash1,hash2,hashbytes) != 0)
{
count_inconsistent ++;
result = false;
}
}
}
}
}
printf("\n"); // nl ok
if (!ok(result,"SanityTest", hash.name()))
printf("# from %d hashes there were %d inconsistent and %d collisions.\n",
count, count_inconsistent, count_same);
delete [] buffer1;
delete [] buffer2;
delete [] hash1;
delete [] hash2;
return result;
}
//----------------------------------------------------------------------------
// Appending zero bytes to a key should always cause it to produce a different
// hash value
template <typename hashtype>
bool AppendedZeroesTest ( hashfunc<hashtype> hash )
{
printf("# Sanity check null suffixes change the hash (simple)");
Rand r(173994);
const int hashbytes = sizeof(hashtype);
int failed = 0;
for(int rep = 0; rep < 1000; rep++)
{
if(rep % 100 == 0) printf(".");
/* Very crude test - check that a 32 byte random string
* has a different hash compared to the same string suffixed
* with 1 to 32 null bytes. */
unsigned char key[256];
memset(key,0,sizeof(key));
if (rep)
hash.seed_state_rand(r);
else
hash.seed_state_zero();
uint8_t h1[hashbytes];
uint8_t h2[hashbytes];
memset(h1,0,hashbytes);
memset(h2,0,hashbytes);
for(int incr = 1; incr <= 16; incr *= 2)
{
for(int i = 0; i < 32; i+=incr)
{
hash(key,32+i,h1);
if(i && memcmp(h1,h2,hashbytes) == 0)
{
failed++;
}
memcpy(h2,h1,hashbytes);
}
}
r.rand_p(key,32);
}
printf("\n"); // nl ok
ok(failed == 0,"Appended Zeroes Test",hash.name());
if (failed) printf("# There were %d collisions\n", failed);
return failed == 0;
}
//-----------------------------------------------------------------------------
// Keyset 'Combination' - all possible combinations of input blocks
// used by the "permutation" tests in main.cpp via CombinationKeyTest
template< typename hashtype >
void CombinationKeygenRecurse ( uint32_t * key, int len, int maxlen,
uint32_t * blocks, int blockcount,
hashfunc<hashtype> hash, std::vector<hashtype> & hashes)
{
if(len == maxlen) return;
for(int i = 0; i < blockcount; i++)
{
key[len] = blocks[i];
//if(len == maxlen-1)
{
hashtype h;
hash(key,(len+1) * sizeof(uint32_t),&h);
hashes.push_back(h);
}
//else
{
CombinationKeygenRecurse(key,len+1,maxlen,blocks,blockcount,hash,hashes);
}
}
}
// used for the Permutation tests in main.cpp
template< typename hashtype >
bool CombinationKeyTest ( hashfunc<hashtype> hash, int maxlen, uint32_t * blocks, int blockcount, bool testColl, double confidence, bool drawDiagram, Rand &r, const char *name )
{
printf("# Keyset 'Combination' - up to %d blocks from a set of %d - ",maxlen,blockcount);
//----------
std::vector<hashtype> hashes;
uint32_t * key = new uint32_t[maxlen];
hash.seed_state_rand(r);
CombinationKeygenRecurse<hashtype>(key,0,maxlen,blocks,blockcount,hash,hashes);
delete [] key;
printf("%d keys\n",(int)hashes.size());
//----------
bool result = true;
result &= TestHashList<hashtype>(hashes,testColl,confidence,drawDiagram,name);
return result;
}
//-----------------------------------------------------------------------------
// Keyset 'Sparse' - generate all possible N-bit keys with up to K bits set
// used by the Sparse tests in main.cpp
template < typename keytype, typename hashtype >
void SparseKeygenRecurse ( hashfunc<hashtype> hash, int start, int bitsleft, bool inclusive, keytype & k, std::vector<hashtype> & hashes, int seed )
{
const int nbytes = sizeof(keytype);
const int nbits = nbytes * 8;
Rand r(seed);
hashtype h;
hash.seed_state_rand(r);
for(int i = start; i < nbits; i++)
{
flipbit(&k,nbytes,i);
if(inclusive || (bitsleft == 1))
{
hash(&k,sizeof(keytype),&h);
hashes.push_back(h);
}
if(bitsleft > 1)
{
SparseKeygenRecurse(hash,i+1,bitsleft-1,inclusive,k,hashes,seed);
}
flipbit(&k,nbytes,i);
}
}
//----------
// used by the Sparse tests in main.cpp
template < int keybits, typename hashtype >
bool SparseKeyTest ( hashfunc<hashtype> hash, const int setbits, bool inclusive, bool testColl, double confidence, bool drawDiagram, int seed )
{
char name[1024];
snprintf(name,1024,"Keyset 'Sparse' - %d-bit keys with %s %d bits set",
keybits, inclusive ? "up to" : "exactly", setbits);
printf("# %s - ", name);
typedef Blob<keybits> keytype;
std::vector<hashtype> hashes;
keytype k;
memset(&k,0,sizeof(k));
Rand r(seed);
hash.seed_state_rand(r);
if(inclusive)
{
hashtype h;
hash(&k,sizeof(keytype),&h);
hashes.push_back(h);
}
SparseKeygenRecurse(hash,0,setbits,inclusive,k,hashes,seed);
printf("%d keys\n",(int)hashes.size());
bool result = true;
result &= TestHashList<hashtype>(hashes,testColl,confidence,drawDiagram,name);
return result;
}
//----------
// The purpose of this test is break hash functions which use the
// intel crc sse4 intrinsic _mm_crc32_u64() by generating an arbitrary
// set of keys composed of blocks which have the same CRC value. Any
// decent hash function should have no problem here, but one that tries
// to "optimize" by using crc will hit a wall. The blocks were found by
// brute forcing a set of colliding blocks, and just to make life interesting
// I used 4 different blocks, but two would do just as well. (You can brute
// force a collision after inspecting about 200k randomly selected blocks.)
// We then compose an arbitrary set of unique keys by permuting a set of the
// colliding blocks. The resulting keys have the same length, and will be
// unique, but when fed to a naive CRC based hash function will all produce
// the same hash value.
template < typename hashtype >
bool CollisionKeyTest ( hashfunc<hashtype> hash, Rand &r, const int num_src_blocks, const int block_width, const uint64_t *blocks, const char *subname )
{
const int shift_bits= (int)sqrt(num_src_blocks);
const uint32_t mask= num_src_blocks - 1;
const int seeds= 10;
const int num_key_blocks= 16;
// count needs to be high enough that we expect a reasonable number
// of collisions for 32 bit, otherwise normal expected random fluctuation
// breaks the percentage tests. IOW, its better to expect 100 collisions than
// to expect 1.
int count = 1024 * 1024 - 1;
int key_bytes= (num_key_blocks * block_width) * sizeof(uint64_t);
uint64_t key[num_key_blocks * block_width];
char name[1024];
snprintf(name,1024,"Keyset '%s-MultiCollision' - %d x %d block keys - %d-bytes long",
subname, count, num_key_blocks, key_bytes);
printf("# %s - %d seeds\n", name, seeds);
int name_len= strlen(name);
std::vector<hashtype> hashes;
hashes.resize(count);
bool result= true;
uint32_t block_template = 1;
for (int i= 0; i < seeds; i++) {
hash.seed_state_rand(r);
for(int j=0; j < count; j++) {
uint64_t *cursor= key;
uint32_t template_bits = block_template;
for (int c = 0; c < (sizeof(uint32_t)*8)/shift_bits; c++) {
int b = (template_bits & mask) * block_width;
for (int x= 0; x < block_width; x++)
cursor[x] = blocks[b+x];
//printf("%016lx\n",*cursor);
cursor += block_width;
template_bits >>= shift_bits;
}
// marsaglia 32-bit permutation - we could use simple increment
// also, but this makes the keys look "random" at a block level.
block_template ^= block_template << 13;
block_template ^= block_template >> 3;
block_template ^= block_template << 17;
// and then hash the result
hash(&key[0],key_bytes,&hashes[j]);
//printf("hash=%016lx",*((uint64_t*)&hashes[j]));
}
snprintf(name,1024,"Keyset '%s-MultiCollision' - seed %d # %s", subname, i+1,hash.name());
result &= TestHashList<hashtype>(hashes,true,false,false,name);
}
return result;
}
template < typename hashtype >
bool CityCollisionKeyTest ( hashfunc<hashtype> hash, Rand &r )
{
const int seeds= 10;
uint64_t blocks[20]= {
0x8e69324ad2a005ffUL, 0x2148534148202020UL,
0x7ae31886221136baUL, 0x2148534148202021UL,
0xa9a6b9c6888e94ffUL, 0x2148534148202022UL,
0x85fdcf8310e3e955UL, 0x2148534148202023UL,
0xb31994ea5c35c000UL, 0x2148534148202024UL,
0x3d7fadbb3c05bf28UL, 0x2148534148202025UL,
0xe105497eb233edb9UL, 0x2148534148202026UL,
0x669d0bfcea999813UL, 0x2148534148202027UL,
0x1f2ba4ec627b9656UL, 0x2148534148202028UL,
0xcaf3187b666bfebfUL, 0x2148534148202029UL,
};
const int num_key_blocks = 2;
const int key_bytes= sizeof(uint64_t) * num_key_blocks;
char name[1024];
const int count = 10;
snprintf(name,1024,"Keyset 'City64-MultiCollision' - %d x %d block keys - %d-bytes long",
count, num_key_blocks, key_bytes);
printf("# %s - %d seeds\n", name, seeds);
int name_len= strlen(name);
std::vector<hashtype> hashes;
hashes.resize(count);
bool result= true;
for(int i = 0; i < seeds; ++i) {
hash.seed_state_rand(r);
uint64_t base_target= r.rand_u64();
for(int j = 0; j < count; ++j) {
hash(blocks+(j*2),16,&hashes[j]);
}
snprintf(name,1024,"Keyset 'City64-MultiCollision' - seed %d # %s", i+1,hash.name());
result &= TestHashList<hashtype>(hashes,true,false,false,name);
}
return result;
}
//-----------------------------------------------------------------------------
// Keyset 'Windows' - for all possible N-bit windows of a K-bit key, generate
// all possible keys with bits set in that window
// this is used by the Windowed tests in main.cpp, which are disabled by default
// and documented as less than useful.
template < typename keytype, typename hashtype >
bool WindowedKeyTest ( hashfunc<hashtype> hash, const int windowbits, bool testCollision, double confidence, bool drawDiagram, Rand &r )
{
const int keybits = sizeof(keytype) * 8;
const int keycount = 1 << windowbits;
std::vector<hashtype> hashes;
hashes.resize(keycount);
bool result = true;
int testcount = keybits;
hash.seed_state_rand(r);
printf("# Keyset 'Windowed' - %3d-bit key, %3d-bit window - %d tests, %d keys per test\n",
keybits,windowbits,testcount,keycount);
for(int j = 0; j <= testcount; j++)
{
int minbit = j;
keytype key;
for(int i = 0; i < keycount; i++)
{
key = i;
//key = key << minbit;
lrot(&key,sizeof(keytype),minbit);
hash(&key,sizeof(keytype),&hashes[i]);
}
char name[1024];
snprintf(name,1024,"Window at %3d",j);
result &= TestHashList(hashes,testCollision,confidence,drawDiagram,name);
}
return result;
}
//-----------------------------------------------------------------------------
// Keyset 'Cyclic' - generate keys that consist solely of N repetitions of M
// bytes.
// (This keyset type is designed to make MurmurHash2 fail)
template < typename hashtype >
bool CyclicKeyTest ( hashfunc<hashtype> hash, int cycleLen, int cycleReps, const int keycount, double confidence, bool drawDiagram, Rand &r )
{
char name[1024];
snprintf(name,1024,"Keyset 'Cyclic' - %d cycles of %d bytes - %d keys",
cycleReps,cycleLen,keycount);
printf("# %s\n",name);
std::vector<hashtype> hashes;
hashes.resize(keycount);
int keyLen = cycleLen * cycleReps;
uint8_t * cycle = new uint8_t[cycleLen + 16];
uint8_t * key = new uint8_t[keyLen];
hash.seed_state_rand(r);
//----------
for(int i = 0; i < keycount; i++)
{
r.rand_p(cycle,cycleLen);
*(uint32_t*)cycle = f3mix(i ^ 0x746a94f1);
for(int j = 0; j < keyLen; j++)
{
key[j] = cycle[j % cycleLen];
}
hash(key,keyLen,&hashes[i]);
}
//----------
bool result = true;
result &= TestHashList(hashes,true,confidence,drawDiagram,name);
delete [] cycle;
delete [] key;
return result;
}
//-----------------------------------------------------------------------------
// Keyset 'TwoBytes' - generate all keys up to length N with two non-zero bytes
void TwoBytesKeygen ( int maxlen, KeyCallback & c, char *name );
template < typename hashtype >
bool TwoBytesTest2 ( hashfunc<hashtype> hash, int maxlen, double confidence, bool drawDiagram )
{
char name[1024];
std::vector<hashtype> hashes;
hash.seed_state_zero();
HashCallback<hashtype> c(hash,hashes);
TwoBytesKeygen(maxlen,c,name);
bool result = true;
result &= TestHashList(hashes,true,confidence,drawDiagram,name);
return result;
}
//-----------------------------------------------------------------------------
// Keyset 'Text' - generate all keys of the form "prefix"+"core"+"suffix",
// where "core" consists of all possible combinations of the given character
// set of length N.
template < typename hashtype >
bool TextKeyTest ( hashfunc<hashtype> hash, const char * prefix, const char * coreset, const int corelen, const char * suffix, double confidence, bool drawDiagram, Rand &r )
{
const int prefixlen = (int)strlen(prefix);
const int suffixlen = (int)strlen(suffix);
const int corecount = (int)strlen(coreset);
const int keybytes = prefixlen + corelen + suffixlen;
const int keycount = (int)pow(double(corecount),double(corelen));
char name[1024];
snprintf(name,1024,"Keyset 'Text' - keys of form \"%s[%.*s]%s\" - %d keys",
prefix,corelen,"XXXXXXXXXXXXXXXX",suffix,keycount);
printf("# %s\n",name);
uint8_t * key = new uint8_t[keybytes+1];
key[keybytes] = 0;
memcpy(key,prefix,prefixlen);
memcpy(key+prefixlen+corelen,suffix,suffixlen);
//----------
std::vector<hashtype> hashes;
hashes.resize(keycount);
hash.seed_state_rand(r);
for(int i = 0; i < keycount; i++)
{
int t = i;
for(int j = 0; j < corelen; j++)
{
key[prefixlen+j] = coreset[t % corecount]; t /= corecount;
}
hash(key,keybytes,&hashes[i]);
}
//----------
bool result = true;
result &= TestHashList(hashes,true,confidence,drawDiagram,name);
delete [] key;
return result;
}
//-----------------------------------------------------------------------------
// Keyset 'RepeatedCharkeyTest' - keys consisting of all the same char,
// differing only in length
// We reuse one block of empty bytes, otherwise the RAM cost is enormous.
template < typename hashtype >
bool RepeatedCharKeyTest ( hashfunc<hashtype> hash, const char *name, unsigned char c, int keycount, double confidence, bool drawDiagram, Rand &r )
{
char fullname[1024];
unsigned char * block = new unsigned char[keycount];
memset(block,c,keycount);
//----------
std::vector<hashtype> hashes;
hashes.resize(keycount);
bool result = true;
for(int rep=0; rep < 2; rep++)
{
snprintf(fullname,1024,"Keyset '%s' - %d keys, %s seed",name,keycount,rep ? "nonzero" : "zero");
printf("# %s\n", fullname);
if (rep) {
hash.seed_state_rand(r);
} else {
hash.seed_state_zero();
}
for(int i = 0; i < keycount; i++)
{
hash(block,i,&hashes[i]);
}
result &= TestHashList(hashes,true,confidence,drawDiagram,fullname);
}
delete [] block;
return result;
}
/* so we can sort an array of indexes into another array */
struct IndirectComparator
{
const std::vector<uint8_t> & value_vector;
int seedbytes;
IndirectComparator(const std::vector<uint8_t> & val_vec, int sb):
seedbytes(sb), value_vector(val_vec) {}
bool operator()(int a, int b)
{
int c = memcmp(&value_vector[a * seedbytes],&value_vector[b * seedbytes], seedbytes);
return c < 0 ? true : c == 0 ? a < b : false;
}
};
//-----------------------------------------------------------------------------
// Keyset 'Seed' - hash "the quick brown fox..." using different seeds
template < typename hashtype >
bool SeedTest ( hashfunc<hashtype> hash, int count, double confidence, bool drawDiagram,
Rand &seed_r, const char * text )
{
char name[1024];
snprintf(name,1024,"Keyset 'Seed' - %d seeds, Key \"%.20s\"%s",
count, text, strlen(text)>20 ? "..." : "");
printf("# %s\n",name);
const int len = (int)strlen(text);
//----------
// All of this palaver is to dedupe the seeds.
// We keep track of the seeds we used for each hash. Then
// we sort the index array by the seeds, and then use that
// to transcribe out the hashes in seed-order, while skipping
// any dupes that are due to dupe seeds. Otherwise we end up
// with ~ twice the expected error just because the RNG will
// produce its own collisions. In most cases this does not matter
// as the expected collisions are so small (far below zero for
// a 64 bit seed/64 bit hash). But for small seeds and/or small
// hashes the problem compounds.
std::vector<hashtype> hashes;
std::vector<hashtype> sorted_hashes;
std::vector<uint8_t> seeds;
std::vector<int> indexes;
seeds.resize( count * hash.seedbytes() );
sorted_hashes.resize(count);
hashes.resize(count);
indexes.resize(count);
int seedbytes = hash.seedbytes();
for(int i = 0; i < count; i++)
{
seed_r.rand_p(&seeds[ i * seedbytes ], seedbytes);
hash(text, len, &seeds[i * seedbytes ], &hashes[i]);
indexes[i]= i;
}
// sort the indexes by their seed
std::sort(indexes.begin(),indexes.end(),IndirectComparator(seeds,seedbytes));
// now loop through
int dupes = 0;
int unique = 0;
sorted_hashes[unique++] = hashes[indexes[0]];
for(size_t i = 1; i < indexes.size(); i++) {
int c = memcmp(&seeds[indexes[i] * seedbytes],&seeds[indexes[i-1] * seedbytes],seedbytes);
if ( c == 0 ) {
dupes++;
} else {
sorted_hashes[unique++]= hashes[indexes[i]];
}
}
sorted_hashes.resize(unique);
bool result = true;
result &= TestHashList<hashtype>(sorted_hashes,true,confidence,drawDiagram,name);
return result;
}
//-----------------------------------------------------------------------------
/* vim: set sts=2 sw=2 et: */